{"title":"基于粒子的自动驾驶汽车纵向控制优化算法的比较研究","authors":"Fadillah Adam Maani, Alif Rizqullah Mahdi, Karina Ardellia Arfian, Yul Yunazwin Nazaruddin","doi":"10.15282/ijame.20.2.2023.14.0812","DOIUrl":null,"url":null,"abstract":"In order to improve the stability and performance of an autonomous vehicle, optimization needs to be explicitly performed in the controllers, which has an essential part in the tracking system. This work proposes a novel longitudinal control optimization scheme and a novel longitudinal controller consisting of a feed-forward and feedback term. The feed-forward term is inspired by the vehicle’s steady-state response, whereas the feedback term is a proportional-integral-derivative (PID) controller. Also, a model representing the longitudinal vehicle dynamics is designed based on physical phenomena affecting the vehicle. Besides, some nature-inspired optimization algorithms are used to determine the optimal model parameters and optimize the controller parameters, i.e., Particle Swarm Optimization (PSO), Accelerated PSO (APSO), Flower Pollination Algorithm (FPA), and Modified FPA (MFPA). The algorithms are compared in optimizing the longitudinal vehicle model and controller using the CARLA simulator, and stability tests are also done for each algorithm. In addition, the characteristics of several cost functions in controller optimization are inspected. The results show that the MFPA is the most stable algorithm, the proposed model represents the system satisfactorily, and optimizing the controller using a regularized cost function leads to better overall performance. Our code is available in https://github.com/fadamsyah/Particle-Based-Optimization-for-Longitudinal-Control.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle-Based Optimization Algorithms for Longitudinal Control of Autonomous Vehicle: A Comparative Study\",\"authors\":\"Fadillah Adam Maani, Alif Rizqullah Mahdi, Karina Ardellia Arfian, Yul Yunazwin Nazaruddin\",\"doi\":\"10.15282/ijame.20.2.2023.14.0812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the stability and performance of an autonomous vehicle, optimization needs to be explicitly performed in the controllers, which has an essential part in the tracking system. This work proposes a novel longitudinal control optimization scheme and a novel longitudinal controller consisting of a feed-forward and feedback term. The feed-forward term is inspired by the vehicle’s steady-state response, whereas the feedback term is a proportional-integral-derivative (PID) controller. Also, a model representing the longitudinal vehicle dynamics is designed based on physical phenomena affecting the vehicle. Besides, some nature-inspired optimization algorithms are used to determine the optimal model parameters and optimize the controller parameters, i.e., Particle Swarm Optimization (PSO), Accelerated PSO (APSO), Flower Pollination Algorithm (FPA), and Modified FPA (MFPA). The algorithms are compared in optimizing the longitudinal vehicle model and controller using the CARLA simulator, and stability tests are also done for each algorithm. In addition, the characteristics of several cost functions in controller optimization are inspected. The results show that the MFPA is the most stable algorithm, the proposed model represents the system satisfactorily, and optimizing the controller using a regularized cost function leads to better overall performance. Our code is available in https://github.com/fadamsyah/Particle-Based-Optimization-for-Longitudinal-Control.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.20.2.2023.14.0812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.2.2023.14.0812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Particle-Based Optimization Algorithms for Longitudinal Control of Autonomous Vehicle: A Comparative Study
In order to improve the stability and performance of an autonomous vehicle, optimization needs to be explicitly performed in the controllers, which has an essential part in the tracking system. This work proposes a novel longitudinal control optimization scheme and a novel longitudinal controller consisting of a feed-forward and feedback term. The feed-forward term is inspired by the vehicle’s steady-state response, whereas the feedback term is a proportional-integral-derivative (PID) controller. Also, a model representing the longitudinal vehicle dynamics is designed based on physical phenomena affecting the vehicle. Besides, some nature-inspired optimization algorithms are used to determine the optimal model parameters and optimize the controller parameters, i.e., Particle Swarm Optimization (PSO), Accelerated PSO (APSO), Flower Pollination Algorithm (FPA), and Modified FPA (MFPA). The algorithms are compared in optimizing the longitudinal vehicle model and controller using the CARLA simulator, and stability tests are also done for each algorithm. In addition, the characteristics of several cost functions in controller optimization are inspected. The results show that the MFPA is the most stable algorithm, the proposed model represents the system satisfactorily, and optimizing the controller using a regularized cost function leads to better overall performance. Our code is available in https://github.com/fadamsyah/Particle-Based-Optimization-for-Longitudinal-Control.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.