{"title":"基于深度学习技术的遥感影像洪水探测综合灾害风险管理","authors":"","doi":"10.30955/gnj.005317","DOIUrl":null,"url":null,"abstract":"<p>Floods are one of the leading causes of damage, prompting mortality and substantial destruction to the structure and total economy of the affected nations. Remote sensing, satellite imagery, global positioning system, and geographic information system (GIS) are widely employed for flood identification to examine flood-related losses. Recently, accurate and automated flood detection models using remote sensing images have become effective for flood disaster management, risk manager, infrastructure planning, disaster rescue management, etc. Computer vision and deep learning (DL) models provide prompt and rapid flood detection in remote sensing images. In this aspect, this paper presents a multiverse optimization with a deep transfer learning-enabled flood detection (MVODTL-FD) technique for disaster risk management. In the proposed MVODTL-FD technique, remote sensing images are investigated for the effectual detection of floods. To accomplish this, the presented MVODTL-FD technique applies a guided normal filter (GNF) based image preprocessing approach to eliminate the noise. In addition, the proposed MVODTL-FD technique uses a deep convolutional neural network-based Squeeze Net model for feature extraction, and the hyperparameter process is performed using the MVO algorithm. At last, the flood detection process is performed using support vector machine (SVM) classification. For establishing the improved version of the MVODTL-FD method, a wide-ranging experimental analysis is performed. The MVODTL-FD model is rated higher in the comparative analysis than other DL models.</p>
","PeriodicalId":55087,"journal":{"name":"Global Nest Journal","volume":"96 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Disaster Risk Management for Flood Detection on Remote Sensing Images using Deep Learning techniques\",\"authors\":\"\",\"doi\":\"10.30955/gnj.005317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Floods are one of the leading causes of damage, prompting mortality and substantial destruction to the structure and total economy of the affected nations. Remote sensing, satellite imagery, global positioning system, and geographic information system (GIS) are widely employed for flood identification to examine flood-related losses. Recently, accurate and automated flood detection models using remote sensing images have become effective for flood disaster management, risk manager, infrastructure planning, disaster rescue management, etc. Computer vision and deep learning (DL) models provide prompt and rapid flood detection in remote sensing images. In this aspect, this paper presents a multiverse optimization with a deep transfer learning-enabled flood detection (MVODTL-FD) technique for disaster risk management. In the proposed MVODTL-FD technique, remote sensing images are investigated for the effectual detection of floods. To accomplish this, the presented MVODTL-FD technique applies a guided normal filter (GNF) based image preprocessing approach to eliminate the noise. In addition, the proposed MVODTL-FD technique uses a deep convolutional neural network-based Squeeze Net model for feature extraction, and the hyperparameter process is performed using the MVO algorithm. At last, the flood detection process is performed using support vector machine (SVM) classification. For establishing the improved version of the MVODTL-FD method, a wide-ranging experimental analysis is performed. The MVODTL-FD model is rated higher in the comparative analysis than other DL models.</p>
\",\"PeriodicalId\":55087,\"journal\":{\"name\":\"Global Nest Journal\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Nest Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30955/gnj.005317\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Nest Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30955/gnj.005317","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Integrated Disaster Risk Management for Flood Detection on Remote Sensing Images using Deep Learning techniques
Floods are one of the leading causes of damage, prompting mortality and substantial destruction to the structure and total economy of the affected nations. Remote sensing, satellite imagery, global positioning system, and geographic information system (GIS) are widely employed for flood identification to examine flood-related losses. Recently, accurate and automated flood detection models using remote sensing images have become effective for flood disaster management, risk manager, infrastructure planning, disaster rescue management, etc. Computer vision and deep learning (DL) models provide prompt and rapid flood detection in remote sensing images. In this aspect, this paper presents a multiverse optimization with a deep transfer learning-enabled flood detection (MVODTL-FD) technique for disaster risk management. In the proposed MVODTL-FD technique, remote sensing images are investigated for the effectual detection of floods. To accomplish this, the presented MVODTL-FD technique applies a guided normal filter (GNF) based image preprocessing approach to eliminate the noise. In addition, the proposed MVODTL-FD technique uses a deep convolutional neural network-based Squeeze Net model for feature extraction, and the hyperparameter process is performed using the MVO algorithm. At last, the flood detection process is performed using support vector machine (SVM) classification. For establishing the improved version of the MVODTL-FD method, a wide-ranging experimental analysis is performed. The MVODTL-FD model is rated higher in the comparative analysis than other DL models.
期刊介绍:
Global Network of Environmental Science and Technology Journal (Global NEST Journal) is a scientific source of information for professionals in a wide range of environmental disciplines. The Journal is published both in print and online.
Global NEST Journal constitutes an international effort of scientists, technologists, engineers and other interested groups involved in all scientific and technological aspects of the environment, as well, as in application techniques aiming at the development of sustainable solutions. Its main target is to support and assist the dissemination of information regarding the most contemporary methods for improving quality of life through the development and application of technologies and policies friendly to the environment