{"title":"全球海洋表面酸化:我们从观测中了解到的","authors":"Richard Feely, Li-Qing Jiang, Rik Wanninkhof, Brendan Carter, Simone Alin, Nina Bednaršek, Catherine Cosca","doi":"10.5670/oceanog.2023.222","DOIUrl":null,"url":null,"abstract":"The chemistry of the global ocean is rapidly changing due to the uptake of anthropogenic carbon dioxide (CO2). This process, commonly referred to as ocean acidification (OA), is negatively impacting many marine species and ecosystems. In this study, we combine observations in the global surface ocean collected by NOAA Pacific Marine Environmental Laboratory and Atlantic Oceanographic and Meteorological Laboratory scientists and their national and international colleagues over the past four decades, along with model outputs, to provide a high-resolution, regionally varying view of global surface ocean carbon dioxide fugacity, carbonate ion content, total hydrogen ion content, pH on total scale, and aragonite and calcite saturation states on selected time intervals from 1961 to 2020. We discuss the major roles played by air-sea anthropogenic CO2 uptake, warming, local upwelling processes, and declining buffer capacity in controlling the spatial and temporal variability of these parameters. These changes are occurring rapidly in regions that would normally be considered OA refugia, thus threatening the protection that these regions provide for stocks of sensitive species and increasing the potential for expanding biological impacts.","PeriodicalId":54695,"journal":{"name":"Oceanography","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Acidification of the Global Surface Ocean: What We Have Learned from Observations\",\"authors\":\"Richard Feely, Li-Qing Jiang, Rik Wanninkhof, Brendan Carter, Simone Alin, Nina Bednaršek, Catherine Cosca\",\"doi\":\"10.5670/oceanog.2023.222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chemistry of the global ocean is rapidly changing due to the uptake of anthropogenic carbon dioxide (CO2). This process, commonly referred to as ocean acidification (OA), is negatively impacting many marine species and ecosystems. In this study, we combine observations in the global surface ocean collected by NOAA Pacific Marine Environmental Laboratory and Atlantic Oceanographic and Meteorological Laboratory scientists and their national and international colleagues over the past four decades, along with model outputs, to provide a high-resolution, regionally varying view of global surface ocean carbon dioxide fugacity, carbonate ion content, total hydrogen ion content, pH on total scale, and aragonite and calcite saturation states on selected time intervals from 1961 to 2020. We discuss the major roles played by air-sea anthropogenic CO2 uptake, warming, local upwelling processes, and declining buffer capacity in controlling the spatial and temporal variability of these parameters. These changes are occurring rapidly in regions that would normally be considered OA refugia, thus threatening the protection that these regions provide for stocks of sensitive species and increasing the potential for expanding biological impacts.\",\"PeriodicalId\":54695,\"journal\":{\"name\":\"Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceanography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5670/oceanog.2023.222\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceanography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5670/oceanog.2023.222","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Acidification of the Global Surface Ocean: What We Have Learned from Observations
The chemistry of the global ocean is rapidly changing due to the uptake of anthropogenic carbon dioxide (CO2). This process, commonly referred to as ocean acidification (OA), is negatively impacting many marine species and ecosystems. In this study, we combine observations in the global surface ocean collected by NOAA Pacific Marine Environmental Laboratory and Atlantic Oceanographic and Meteorological Laboratory scientists and their national and international colleagues over the past four decades, along with model outputs, to provide a high-resolution, regionally varying view of global surface ocean carbon dioxide fugacity, carbonate ion content, total hydrogen ion content, pH on total scale, and aragonite and calcite saturation states on selected time intervals from 1961 to 2020. We discuss the major roles played by air-sea anthropogenic CO2 uptake, warming, local upwelling processes, and declining buffer capacity in controlling the spatial and temporal variability of these parameters. These changes are occurring rapidly in regions that would normally be considered OA refugia, thus threatening the protection that these regions provide for stocks of sensitive species and increasing the potential for expanding biological impacts.
期刊介绍:
First published in July 1988, Oceanography is the official magazine of The Oceanography Society. It contains peer-reviewed articles that chronicle all aspects of ocean science and its applications. In addition, Oceanography solicits and publishes news and information, meeting reports, hands-on laboratory exercises, career profiles, book reviews, and shorter, editor-reviewed articles that address public policy and education and how they are affected by science and technology. We encourage submission of short papers to the Breaking Waves section that describe novel approaches to multidisciplinary problems in ocean science.