Sinwoo Cho;Omar Barrera;Pietro Simeoni;Emily N. Marshall;Jack Kramer;Keisuke Motoki;Tzu-Hsuan Hsu;Vakhtang Chulukhadze;Matteo Rinaldi;W. Alan Doolittle;Ruochen Lu
{"title":"溅射氮化钪铝的毫米波薄膜体声谐振器","authors":"Sinwoo Cho;Omar Barrera;Pietro Simeoni;Emily N. Marshall;Jack Kramer;Keisuke Motoki;Tzu-Hsuan Hsu;Vakhtang Chulukhadze;Matteo Rinaldi;W. Alan Doolittle;Ruochen Lu","doi":"10.1109/JMEMS.2023.3321284","DOIUrl":null,"url":null,"abstract":"This work reports a millimeter wave (mmWave) thin-film bulk acoustic resonator (FBAR) in sputtered scandium aluminum nitride (ScAlN). This paper identifies challenges of frequency scaling sputtered ScAlN into mmWave and proposes a stack and new fabrication procedure with a sputtered Sc0.3 Al0.7 N on Al on Si carrier wafer. The resonator achieves electromechanical coupling (\n<inline-formula> <tex-math>${k} ^{2}$ </tex-math></inline-formula>\n) of 7.0% and quality factor (\n<inline-formula> <tex-math>${Q}$ </tex-math></inline-formula>\n) of 62 for the first-order symmetric (S1) mode at 21.4 GHz, along with \n<inline-formula> <tex-math>${k} ^{2}$ </tex-math></inline-formula>\n of 4.0% and \n<inline-formula> <tex-math>${Q}$ </tex-math></inline-formula>\n of 19 for the third-order symmetric (S3) mode at 55.4 GHz, showing higher figures of merit (FoM, \n<inline-formula> <tex-math>${k} ^{2} \\cdot {Q}$ </tex-math></inline-formula>\n) than reported AlN/ScAlN-based mmWave acoustic resonators. The ScAlN quality is identified by transmission electron microscopy (TEM) and X-ray diffraction (XRD), identifying the bottlenecks in the existing piezoelectric-metal stack. Further improvement of ScAlN/AlN-based mmWave acoustic resonators calls for better crystalline quality from improved thin-film deposition methods. [2023-0151]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"32 6","pages":"529-532"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Millimeter Wave Thin-Film Bulk Acoustic Resonator in Sputtered Scandium Aluminum Nitride\",\"authors\":\"Sinwoo Cho;Omar Barrera;Pietro Simeoni;Emily N. Marshall;Jack Kramer;Keisuke Motoki;Tzu-Hsuan Hsu;Vakhtang Chulukhadze;Matteo Rinaldi;W. Alan Doolittle;Ruochen Lu\",\"doi\":\"10.1109/JMEMS.2023.3321284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports a millimeter wave (mmWave) thin-film bulk acoustic resonator (FBAR) in sputtered scandium aluminum nitride (ScAlN). This paper identifies challenges of frequency scaling sputtered ScAlN into mmWave and proposes a stack and new fabrication procedure with a sputtered Sc0.3 Al0.7 N on Al on Si carrier wafer. The resonator achieves electromechanical coupling (\\n<inline-formula> <tex-math>${k} ^{2}$ </tex-math></inline-formula>\\n) of 7.0% and quality factor (\\n<inline-formula> <tex-math>${Q}$ </tex-math></inline-formula>\\n) of 62 for the first-order symmetric (S1) mode at 21.4 GHz, along with \\n<inline-formula> <tex-math>${k} ^{2}$ </tex-math></inline-formula>\\n of 4.0% and \\n<inline-formula> <tex-math>${Q}$ </tex-math></inline-formula>\\n of 19 for the third-order symmetric (S3) mode at 55.4 GHz, showing higher figures of merit (FoM, \\n<inline-formula> <tex-math>${k} ^{2} \\\\cdot {Q}$ </tex-math></inline-formula>\\n) than reported AlN/ScAlN-based mmWave acoustic resonators. The ScAlN quality is identified by transmission electron microscopy (TEM) and X-ray diffraction (XRD), identifying the bottlenecks in the existing piezoelectric-metal stack. Further improvement of ScAlN/AlN-based mmWave acoustic resonators calls for better crystalline quality from improved thin-film deposition methods. [2023-0151]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"32 6\",\"pages\":\"529-532\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10288400/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10288400/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
This work reports a millimeter wave (mmWave) thin-film bulk acoustic resonator (FBAR) in sputtered scandium aluminum nitride (ScAlN). This paper identifies challenges of frequency scaling sputtered ScAlN into mmWave and proposes a stack and new fabrication procedure with a sputtered Sc0.3 Al0.7 N on Al on Si carrier wafer. The resonator achieves electromechanical coupling (
${k} ^{2}$
) of 7.0% and quality factor (
${Q}$
) of 62 for the first-order symmetric (S1) mode at 21.4 GHz, along with
${k} ^{2}$
of 4.0% and
${Q}$
of 19 for the third-order symmetric (S3) mode at 55.4 GHz, showing higher figures of merit (FoM,
${k} ^{2} \cdot {Q}$
) than reported AlN/ScAlN-based mmWave acoustic resonators. The ScAlN quality is identified by transmission electron microscopy (TEM) and X-ray diffraction (XRD), identifying the bottlenecks in the existing piezoelectric-metal stack. Further improvement of ScAlN/AlN-based mmWave acoustic resonators calls for better crystalline quality from improved thin-film deposition methods. [2023-0151]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.