{"title":"基于特定语言特征的韩文命名实体识别","authors":"Yige Chen, KyungTae Lim, Jungyeul Park","doi":"10.1017/s1351324923000311","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a novel way of improving named entity recognition (NER) in the Korean language using its language-specific features. While the field of NER has been studied extensively in recent years, the mechanism of efficiently recognizing named entities (NEs) in Korean has hardly been explored. This is because the Korean language has distinct linguistic properties that present challenges for modeling. Therefore, an annotation scheme for Korean corpora by adopting the CoNLL-U format, which decomposes Korean words into morphemes and reduces the ambiguity of NEs in the original segmentation that may contain functional morphemes such as postpositions and particles, is proposed herein. We investigate how the NE tags are best represented in this morpheme-based scheme and implement an algorithm to convert word-based and syllable-based Korean corpora with NEs into the proposed morpheme-based format. Analyses of the results of traditional and neural models reveal that the proposed morpheme-based format is feasible, and the varied performances of the models under the influence of various additional language-specific features are demonstrated. Extrinsic conditions were also considered to observe the variance of the performances of the proposed models, given different types of data, including the original segmentation and different types of tagging formats.","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":"66 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Korean named entity recognition based on language-specific features\",\"authors\":\"Yige Chen, KyungTae Lim, Jungyeul Park\",\"doi\":\"10.1017/s1351324923000311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we propose a novel way of improving named entity recognition (NER) in the Korean language using its language-specific features. While the field of NER has been studied extensively in recent years, the mechanism of efficiently recognizing named entities (NEs) in Korean has hardly been explored. This is because the Korean language has distinct linguistic properties that present challenges for modeling. Therefore, an annotation scheme for Korean corpora by adopting the CoNLL-U format, which decomposes Korean words into morphemes and reduces the ambiguity of NEs in the original segmentation that may contain functional morphemes such as postpositions and particles, is proposed herein. We investigate how the NE tags are best represented in this morpheme-based scheme and implement an algorithm to convert word-based and syllable-based Korean corpora with NEs into the proposed morpheme-based format. Analyses of the results of traditional and neural models reveal that the proposed morpheme-based format is feasible, and the varied performances of the models under the influence of various additional language-specific features are demonstrated. Extrinsic conditions were also considered to observe the variance of the performances of the proposed models, given different types of data, including the original segmentation and different types of tagging formats.\",\"PeriodicalId\":49143,\"journal\":{\"name\":\"Natural Language Engineering\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1351324923000311\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1351324923000311","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Korean named entity recognition based on language-specific features
Abstract In this paper, we propose a novel way of improving named entity recognition (NER) in the Korean language using its language-specific features. While the field of NER has been studied extensively in recent years, the mechanism of efficiently recognizing named entities (NEs) in Korean has hardly been explored. This is because the Korean language has distinct linguistic properties that present challenges for modeling. Therefore, an annotation scheme for Korean corpora by adopting the CoNLL-U format, which decomposes Korean words into morphemes and reduces the ambiguity of NEs in the original segmentation that may contain functional morphemes such as postpositions and particles, is proposed herein. We investigate how the NE tags are best represented in this morpheme-based scheme and implement an algorithm to convert word-based and syllable-based Korean corpora with NEs into the proposed morpheme-based format. Analyses of the results of traditional and neural models reveal that the proposed morpheme-based format is feasible, and the varied performances of the models under the influence of various additional language-specific features are demonstrated. Extrinsic conditions were also considered to observe the variance of the performances of the proposed models, given different types of data, including the original segmentation and different types of tagging formats.
期刊介绍:
Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.