Daniele Agostini, Hannah Markwig, Clemens Nollau, Victoria Schleis, Javier Sendra-Arranz, Bernd Sturmfels
{"title":"从分支点恢复平面曲线","authors":"Daniele Agostini, Hannah Markwig, Clemens Nollau, Victoria Schleis, Javier Sendra-Arranz, Bernd Sturmfels","doi":"10.1007/s00454-023-00538-5","DOIUrl":null,"url":null,"abstract":"Abstract We recover plane curves from their branch points under projection onto a line. Our focus lies on cubics and quartics. These have 6 and 12 branch points respectively. The plane Hurwitz numbers 40 and 120 count the orbits of solutions. We determine the numbers of real solutions, and we present exact algorithms for recovery. Our approach relies on 150 years of beautiful algebraic geometry, from Clebsch to Vakil and beyond.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovery of Plane Curves from Branch Points\",\"authors\":\"Daniele Agostini, Hannah Markwig, Clemens Nollau, Victoria Schleis, Javier Sendra-Arranz, Bernd Sturmfels\",\"doi\":\"10.1007/s00454-023-00538-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We recover plane curves from their branch points under projection onto a line. Our focus lies on cubics and quartics. These have 6 and 12 branch points respectively. The plane Hurwitz numbers 40 and 120 count the orbits of solutions. We determine the numbers of real solutions, and we present exact algorithms for recovery. Our approach relies on 150 years of beautiful algebraic geometry, from Clebsch to Vakil and beyond.\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00538-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00538-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract We recover plane curves from their branch points under projection onto a line. Our focus lies on cubics and quartics. These have 6 and 12 branch points respectively. The plane Hurwitz numbers 40 and 120 count the orbits of solutions. We determine the numbers of real solutions, and we present exact algorithms for recovery. Our approach relies on 150 years of beautiful algebraic geometry, from Clebsch to Vakil and beyond.