论高阶布里渊镶嵌及平面上相关平铺的角度

Herbert Edelsbrunner, Alexey Garber, Mohadese Ghafari, Teresa Heiss, Morteza Saghafian
{"title":"论高阶布里渊镶嵌及平面上相关平铺的角度","authors":"Herbert Edelsbrunner, Alexey Garber, Mohadese Ghafari, Teresa Heiss, Morteza Saghafian","doi":"10.1007/s00454-023-00566-1","DOIUrl":null,"url":null,"abstract":"Abstract For a locally finite set in $${{{\\mathbb {R}}}}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , the order- k Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in k . As an example, a stationary Poisson point process in $${{{\\mathbb {R}}}}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> is locally finite, coarsely dense, and generic with probability one. For such a set, the distributions of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-1 Delaunay mosaics given by Miles (Math. Biosci. 6 , 85–127 (1970)).","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane\",\"authors\":\"Herbert Edelsbrunner, Alexey Garber, Mohadese Ghafari, Teresa Heiss, Morteza Saghafian\",\"doi\":\"10.1007/s00454-023-00566-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a locally finite set in $${{{\\\\mathbb {R}}}}^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , the order- k Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in k . As an example, a stationary Poisson point process in $${{{\\\\mathbb {R}}}}^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> is locally finite, coarsely dense, and generic with probability one. For such a set, the distributions of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-1 Delaunay mosaics given by Miles (Math. Biosci. 6 , 85–127 (1970)).\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00566-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00566-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要对于$${{{\mathbb {R}}}}^2$$ r2中的一个局部有限集合,k阶布里渊镶嵌形成了平面的凸面拼接的无限序列。如果集合是粗密的一般集合,则对应的最小和最大角度的无穷序列在k上都是单调的。例如,$${{{\mathbb {R}}}}^2$$ r2中的平稳泊松点过程是局部有限的、粗密的、一般的,其概率为1。对于这样一个集合,Voronoi镶嵌、Delaunay镶嵌和Brillouin镶嵌中的角度分布与阶数无关,可以由Miles (Math.)给出的1阶Delaunay镶嵌中的角度公式推导出来。生物科学,6,85-127(1970)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane

On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane
Abstract For a locally finite set in $${{{\mathbb {R}}}}^2$$ R 2 , the order- k Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in k . As an example, a stationary Poisson point process in $${{{\mathbb {R}}}}^2$$ R 2 is locally finite, coarsely dense, and generic with probability one. For such a set, the distributions of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-1 Delaunay mosaics given by Miles (Math. Biosci. 6 , 85–127 (1970)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信