Herbert Edelsbrunner, Alexey Garber, Mohadese Ghafari, Teresa Heiss, Morteza Saghafian
{"title":"论高阶布里渊镶嵌及平面上相关平铺的角度","authors":"Herbert Edelsbrunner, Alexey Garber, Mohadese Ghafari, Teresa Heiss, Morteza Saghafian","doi":"10.1007/s00454-023-00566-1","DOIUrl":null,"url":null,"abstract":"Abstract For a locally finite set in $${{{\\mathbb {R}}}}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , the order- k Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in k . As an example, a stationary Poisson point process in $${{{\\mathbb {R}}}}^2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> is locally finite, coarsely dense, and generic with probability one. For such a set, the distributions of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-1 Delaunay mosaics given by Miles (Math. Biosci. 6 , 85–127 (1970)).","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane\",\"authors\":\"Herbert Edelsbrunner, Alexey Garber, Mohadese Ghafari, Teresa Heiss, Morteza Saghafian\",\"doi\":\"10.1007/s00454-023-00566-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a locally finite set in $${{{\\\\mathbb {R}}}}^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> , the order- k Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in k . As an example, a stationary Poisson point process in $${{{\\\\mathbb {R}}}}^2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> is locally finite, coarsely dense, and generic with probability one. For such a set, the distributions of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-1 Delaunay mosaics given by Miles (Math. Biosci. 6 , 85–127 (1970)).\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00566-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00566-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane
Abstract For a locally finite set in $${{{\mathbb {R}}}}^2$$ R2 , the order- k Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in k . As an example, a stationary Poisson point process in $${{{\mathbb {R}}}}^2$$ R2 is locally finite, coarsely dense, and generic with probability one. For such a set, the distributions of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-1 Delaunay mosaics given by Miles (Math. Biosci. 6 , 85–127 (1970)).