{"title":"基于时变标度函数的规定时间DWR分数阶控制","authors":"Pengfei Zhang, Qiyuan Chen, Ye Chen","doi":"10.1155/2023/6622657","DOIUrl":null,"url":null,"abstract":"This study focuses on a differential wheeled robot’s (DWR) prescribed-time fractional order position control. Firstly, based on the kinematic model of DWR, a distance-related orientation error is designed using the inverse sine function. Based on this, an improved linear velocity constraint function is proposed. Compared with existing methods, while ensuring the correlation between velocity and orientation error, the multibalance point risk caused by large angle errors is avoided. Then, a prescribed-time fractional order position controller based on a time-varying scaling function is proposed to stabilize the kinematic system of DWR in the prescribed time. This controller can stabilize the position control system of the DWR in a prescribed time by adjusting the prescribed-time parameter, avoiding the infinite gain risk in traditional prescribed-time controllers. Finally, through numerical simulation, we verify that the proposed control law can converge the system status of DWR to the bounded interval in the prescribed time.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"7 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prescribed-Time Fractional Order Control of DWR via Time-Varying Scaling Function\",\"authors\":\"Pengfei Zhang, Qiyuan Chen, Ye Chen\",\"doi\":\"10.1155/2023/6622657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on a differential wheeled robot’s (DWR) prescribed-time fractional order position control. Firstly, based on the kinematic model of DWR, a distance-related orientation error is designed using the inverse sine function. Based on this, an improved linear velocity constraint function is proposed. Compared with existing methods, while ensuring the correlation between velocity and orientation error, the multibalance point risk caused by large angle errors is avoided. Then, a prescribed-time fractional order position controller based on a time-varying scaling function is proposed to stabilize the kinematic system of DWR in the prescribed time. This controller can stabilize the position control system of the DWR in a prescribed time by adjusting the prescribed-time parameter, avoiding the infinite gain risk in traditional prescribed-time controllers. Finally, through numerical simulation, we verify that the proposed control law can converge the system status of DWR to the bounded interval in the prescribed time.\",\"PeriodicalId\":46335,\"journal\":{\"name\":\"International Journal of Rotating Machinery\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Rotating Machinery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6622657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rotating Machinery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6622657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Prescribed-Time Fractional Order Control of DWR via Time-Varying Scaling Function
This study focuses on a differential wheeled robot’s (DWR) prescribed-time fractional order position control. Firstly, based on the kinematic model of DWR, a distance-related orientation error is designed using the inverse sine function. Based on this, an improved linear velocity constraint function is proposed. Compared with existing methods, while ensuring the correlation between velocity and orientation error, the multibalance point risk caused by large angle errors is avoided. Then, a prescribed-time fractional order position controller based on a time-varying scaling function is proposed to stabilize the kinematic system of DWR in the prescribed time. This controller can stabilize the position control system of the DWR in a prescribed time by adjusting the prescribed-time parameter, avoiding the infinite gain risk in traditional prescribed-time controllers. Finally, through numerical simulation, we verify that the proposed control law can converge the system status of DWR to the bounded interval in the prescribed time.
期刊介绍:
This comprehensive journal provides the latest information on rotating machines and machine elements. This technology has become essential to many industrial processes, including gas-, steam-, water-, or wind-driven turbines at power generation systems, and in food processing, automobile and airplane engines, heating, refrigeration, air conditioning, and chemical or petroleum refining. In spite of the importance of rotating machinery and the huge financial resources involved in the industry, only a few publications distribute research and development information on the prime movers. This journal is the first source to combine the technology, as it applies to all of these specialties, previously scattered throughout literature.