{"title":"压缩增材制造细观结构的有限元模拟","authors":"Anne Schmitz","doi":"10.1115/1.4063462","DOIUrl":null,"url":null,"abstract":"Abstract Numerical modeling is a useful approach for answering research questions that are either difficult or inefficient to answer experimentally. The goal of this study was to develop a validated numerical model of a stereolithography (SLA) manufactured mesostructure to predict compression behavior. A three-dimensional (3D) model was created for an 80 × 80 × 20 mm compression block. ANSYS was used to simulate compression testing of this structure. The lower plate of the structure was fixed while a vertical displacement was prescribed on the upper plate. The base material was modeled using a linearly elastic, isotropic material derived from Young's modulus (E), Poisson's ratio, and the ultimate tensile strength. The base material was varied to represent three different SLA polymers from Formlabs (i.e., three different models of the same geometrical structure). The shape of the force–displacement curves and compression force values agreed well between the model and previously collected experimental data. However, this agreement was limited to stiffer materials and only up to 10 mm of compression. This may be where the structure shifts from elastic to plastic behavior and some lattice structures fracture. This simulation tool can be used in the future to predict and optimize the behavior of this lattice structure but only while operating elastically.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Simulation of Compressing an Additively Manufactured Mesostructure\",\"authors\":\"Anne Schmitz\",\"doi\":\"10.1115/1.4063462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Numerical modeling is a useful approach for answering research questions that are either difficult or inefficient to answer experimentally. The goal of this study was to develop a validated numerical model of a stereolithography (SLA) manufactured mesostructure to predict compression behavior. A three-dimensional (3D) model was created for an 80 × 80 × 20 mm compression block. ANSYS was used to simulate compression testing of this structure. The lower plate of the structure was fixed while a vertical displacement was prescribed on the upper plate. The base material was modeled using a linearly elastic, isotropic material derived from Young's modulus (E), Poisson's ratio, and the ultimate tensile strength. The base material was varied to represent three different SLA polymers from Formlabs (i.e., three different models of the same geometrical structure). The shape of the force–displacement curves and compression force values agreed well between the model and previously collected experimental data. However, this agreement was limited to stiffer materials and only up to 10 mm of compression. This may be where the structure shifts from elastic to plastic behavior and some lattice structures fracture. This simulation tool can be used in the future to predict and optimize the behavior of this lattice structure but only while operating elastically.\",\"PeriodicalId\":73734,\"journal\":{\"name\":\"Journal of engineering and science in medical diagnostics and therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of engineering and science in medical diagnostics and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite Element Simulation of Compressing an Additively Manufactured Mesostructure
Abstract Numerical modeling is a useful approach for answering research questions that are either difficult or inefficient to answer experimentally. The goal of this study was to develop a validated numerical model of a stereolithography (SLA) manufactured mesostructure to predict compression behavior. A three-dimensional (3D) model was created for an 80 × 80 × 20 mm compression block. ANSYS was used to simulate compression testing of this structure. The lower plate of the structure was fixed while a vertical displacement was prescribed on the upper plate. The base material was modeled using a linearly elastic, isotropic material derived from Young's modulus (E), Poisson's ratio, and the ultimate tensile strength. The base material was varied to represent three different SLA polymers from Formlabs (i.e., three different models of the same geometrical structure). The shape of the force–displacement curves and compression force values agreed well between the model and previously collected experimental data. However, this agreement was limited to stiffer materials and only up to 10 mm of compression. This may be where the structure shifts from elastic to plastic behavior and some lattice structures fracture. This simulation tool can be used in the future to predict and optimize the behavior of this lattice structure but only while operating elastically.