{"title":"结合变分自编码器和物理偏差改进显微镜数据分析","authors":"Arpan Biswas, Maxim Ziatdinov, Sergei V. Kalinin","doi":"10.1088/2632-2153/acf6a9","DOIUrl":null,"url":null,"abstract":"Abstract Electron and scanning probe microscopy produce vast amounts of data in the form of images or hyperspectral data, such as electron energy loss spectroscopy or 4D scanning transmission electron microscope, that contain information on a wide range of structural, physical, and chemical properties of materials. To extract valuable insights from these data, it is crucial to identify physically separate regions in the data, such as phases, ferroic variants, and boundaries between them. In order to derive an easily interpretable feature analysis, combining with well-defined boundaries in a principled and unsupervised manner, here we present a physics augmented machine learning method which combines the capability of variational autoencoders to disentangle factors of variability within the data and the physics driven loss function that seeks to minimize the total length of the discontinuities in images corresponding to latent representations. Our method is applied to various materials, including NiO-LSMO, BiFeO 3 , and graphene. The results demonstrate the effectiveness of our approach in extracting meaningful information from large volumes of imaging data. The customized codes of the required functions and classes to develop phyVAE is available at https://github.com/arpanbiswas52/phy-VAE .","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"49 1","pages":"0"},"PeriodicalIF":6.3000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Variational Autoencoders and Physical Bias for Improved Microscopy Data Analysis\",\"authors\":\"Arpan Biswas, Maxim Ziatdinov, Sergei V. Kalinin\",\"doi\":\"10.1088/2632-2153/acf6a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Electron and scanning probe microscopy produce vast amounts of data in the form of images or hyperspectral data, such as electron energy loss spectroscopy or 4D scanning transmission electron microscope, that contain information on a wide range of structural, physical, and chemical properties of materials. To extract valuable insights from these data, it is crucial to identify physically separate regions in the data, such as phases, ferroic variants, and boundaries between them. In order to derive an easily interpretable feature analysis, combining with well-defined boundaries in a principled and unsupervised manner, here we present a physics augmented machine learning method which combines the capability of variational autoencoders to disentangle factors of variability within the data and the physics driven loss function that seeks to minimize the total length of the discontinuities in images corresponding to latent representations. Our method is applied to various materials, including NiO-LSMO, BiFeO 3 , and graphene. The results demonstrate the effectiveness of our approach in extracting meaningful information from large volumes of imaging data. The customized codes of the required functions and classes to develop phyVAE is available at https://github.com/arpanbiswas52/phy-VAE .\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/acf6a9\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/acf6a9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Combining Variational Autoencoders and Physical Bias for Improved Microscopy Data Analysis
Abstract Electron and scanning probe microscopy produce vast amounts of data in the form of images or hyperspectral data, such as electron energy loss spectroscopy or 4D scanning transmission electron microscope, that contain information on a wide range of structural, physical, and chemical properties of materials. To extract valuable insights from these data, it is crucial to identify physically separate regions in the data, such as phases, ferroic variants, and boundaries between them. In order to derive an easily interpretable feature analysis, combining with well-defined boundaries in a principled and unsupervised manner, here we present a physics augmented machine learning method which combines the capability of variational autoencoders to disentangle factors of variability within the data and the physics driven loss function that seeks to minimize the total length of the discontinuities in images corresponding to latent representations. Our method is applied to various materials, including NiO-LSMO, BiFeO 3 , and graphene. The results demonstrate the effectiveness of our approach in extracting meaningful information from large volumes of imaging data. The customized codes of the required functions and classes to develop phyVAE is available at https://github.com/arpanbiswas52/phy-VAE .
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.