{"title":"最小化长度的周期斯坦纳网络","authors":"Jerome Alex, Karsten Grosse-Brauckmann","doi":"10.1007/s00454-023-00576-z","DOIUrl":null,"url":null,"abstract":"Abstract We study a problem of geometric graph theory: We determine the triply periodic graph in Euclidean 3-space which minimizes length among all graphs spanning a fundamental domain with the same volume. The minimizer is the so-called network with quotient the complete graph on four vertices $$K_4$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>4</mml:mn> </mml:msub> </mml:math> . For comparison we consider a competing topological class, also with a quotient on four vertices, and determine the minimizing networks.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Periodic Steiner Networks Minimizing Length\",\"authors\":\"Jerome Alex, Karsten Grosse-Brauckmann\",\"doi\":\"10.1007/s00454-023-00576-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study a problem of geometric graph theory: We determine the triply periodic graph in Euclidean 3-space which minimizes length among all graphs spanning a fundamental domain with the same volume. The minimizer is the so-called network with quotient the complete graph on four vertices $$K_4$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>4</mml:mn> </mml:msub> </mml:math> . For comparison we consider a competing topological class, also with a quotient on four vertices, and determine the minimizing networks.\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00576-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00576-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
摘要研究几何图论中的一个问题:在欧几里得三维空间中,在相同体积的基本域上的所有图中,确定最小长度的三周期图。最小化器是所谓的带有商的网络,四个顶点上的完全图$$K_4$$ K 4。为了比较,我们考虑一个竞争的拓扑类,同样在四个顶点上有一个商,并确定最小化网络。
Abstract We study a problem of geometric graph theory: We determine the triply periodic graph in Euclidean 3-space which minimizes length among all graphs spanning a fundamental domain with the same volume. The minimizer is the so-called network with quotient the complete graph on four vertices $$K_4$$ K4 . For comparison we consider a competing topological class, also with a quotient on four vertices, and determine the minimizing networks.