{"title":"用于修复破裂铝合金板的碳纤维增强塑料补丁的强度验证","authors":"Guang-Min Luo, Chi-Hong Liang","doi":"10.1007/s10443-023-10173-1","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminium alloy is a commonly used material in the superstructure of naval vessels. This alloy is prone to sensitisation when exposed to the marine environment for an extended period, which leads to the formation of stress corrosion cracks. Because welding is unsuitable for repairing sensitised aluminium alloy with cracks, this study used carbon-fibre-reinforced plastic (CFRP) patches for repair. The repair effect of CFRP patches was examined through experiments and numerical simulation to clarify the mechanical properties of cracked aluminium alloy repaired with CFRP patches. The experimental results revealed that the tensile strength of cracked aluminium alloy was increased by 40% after its repair with a CFRP patch, and the obtained tensile strength was higher than the yielding strength of this alloy. With regard to numerical simulation, this study employed the extended finite-element method (XFEM) and traction-separation law to simulate crack propagation in cracked aluminium alloy and the bonding strength at the repair interface. The numerical simulation results were consistent with the experimental results, which confirmed that the established numerical model accurately captures the failure trends and ultimate strength of cracked aluminium alloy repaired with a CFRP patch. Future researchers can use the numerical simulation method established in this study to predict the effectiveness of using CFRP patches in the repair of naval vessel superstructures.</p></div>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"31 1","pages":"265 - 289"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength Verification of a Carbon-fibre-reinforced Plastic Patch Used to Repair a Cracked Aluminium Alloy Plate\",\"authors\":\"Guang-Min Luo, Chi-Hong Liang\",\"doi\":\"10.1007/s10443-023-10173-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aluminium alloy is a commonly used material in the superstructure of naval vessels. This alloy is prone to sensitisation when exposed to the marine environment for an extended period, which leads to the formation of stress corrosion cracks. Because welding is unsuitable for repairing sensitised aluminium alloy with cracks, this study used carbon-fibre-reinforced plastic (CFRP) patches for repair. The repair effect of CFRP patches was examined through experiments and numerical simulation to clarify the mechanical properties of cracked aluminium alloy repaired with CFRP patches. The experimental results revealed that the tensile strength of cracked aluminium alloy was increased by 40% after its repair with a CFRP patch, and the obtained tensile strength was higher than the yielding strength of this alloy. With regard to numerical simulation, this study employed the extended finite-element method (XFEM) and traction-separation law to simulate crack propagation in cracked aluminium alloy and the bonding strength at the repair interface. The numerical simulation results were consistent with the experimental results, which confirmed that the established numerical model accurately captures the failure trends and ultimate strength of cracked aluminium alloy repaired with a CFRP patch. Future researchers can use the numerical simulation method established in this study to predict the effectiveness of using CFRP patches in the repair of naval vessel superstructures.</p></div>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"31 1\",\"pages\":\"265 - 289\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10443-023-10173-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10443-023-10173-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Strength Verification of a Carbon-fibre-reinforced Plastic Patch Used to Repair a Cracked Aluminium Alloy Plate
Aluminium alloy is a commonly used material in the superstructure of naval vessels. This alloy is prone to sensitisation when exposed to the marine environment for an extended period, which leads to the formation of stress corrosion cracks. Because welding is unsuitable for repairing sensitised aluminium alloy with cracks, this study used carbon-fibre-reinforced plastic (CFRP) patches for repair. The repair effect of CFRP patches was examined through experiments and numerical simulation to clarify the mechanical properties of cracked aluminium alloy repaired with CFRP patches. The experimental results revealed that the tensile strength of cracked aluminium alloy was increased by 40% after its repair with a CFRP patch, and the obtained tensile strength was higher than the yielding strength of this alloy. With regard to numerical simulation, this study employed the extended finite-element method (XFEM) and traction-separation law to simulate crack propagation in cracked aluminium alloy and the bonding strength at the repair interface. The numerical simulation results were consistent with the experimental results, which confirmed that the established numerical model accurately captures the failure trends and ultimate strength of cracked aluminium alloy repaired with a CFRP patch. Future researchers can use the numerical simulation method established in this study to predict the effectiveness of using CFRP patches in the repair of naval vessel superstructures.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.