由蓖麻油、脂肪酸和异戊醇制备的生物润滑剂的热氧化稳定性和摩擦学性能

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Maria Marliete F. Melo Neta, Gustavo R. R. Lima, Philipe de O. Tavares, Igor de M. Figueredo, Weslley da S. Rocha, Paulo R. C. F. Ribeiro Filho, Célio L. Cavalcante, Francisco Murilo T. Luna
{"title":"由蓖麻油、脂肪酸和异戊醇制备的生物润滑剂的热氧化稳定性和摩擦学性能","authors":"Maria Marliete F. Melo Neta, Gustavo R. R. Lima, Philipe de O. Tavares, Igor de M. Figueredo, Weslley da S. Rocha, Paulo R. C. F. Ribeiro Filho, Célio L. Cavalcante, Francisco Murilo T. Luna","doi":"10.3390/lubricants11110490","DOIUrl":null,"url":null,"abstract":"In this study, the thermo-oxidative stability and tribological behavior of bio-based lubricant samples synthesized from castor oil using isoamyl alcohol were evaluated. Initially, the compositional and physicochemical properties of the obtained samples were assessed using the 1H NMR, FTIR and ASTM methods. Oxidative stability of the samples was evaluated using the Rancimat method at 110 °C under air flow. The final biolubricant sample (BL2), obtained after esterification, epoxidation and oxirane rings opening reactions, presented an oxidation stability time (OST) of 14.3 h. The thermal stability was also evaluated by thermogravimetry (TG) from the mass variations under inert and oxidative atmosphere. BL2 showed higher thermal stability compared to the other samples, demonstrating higher decomposition temperatures in both inert (339.04 °C) and oxidative (338.47 °C) atmospheres, for a mass loss of 50%. The tribological properties of the samples were evaluated using a four-ball tribometer configuration. The BL1 and BL2 samples exhibited lower friction coefficients than the mineral oil sample (MOS) by 21.5% and 43.1%, respectively. Regarding wear, the observed wear scar diameter (WSD) was also lower in BL1 and BL2 compared to MOS by 5.2% and 40.4%, respectively. The results of the tribological evaluation suggest that both samples (BL1 and BL2) have promising potential for applications in lubricating machines.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"14 9","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermo-Oxidative Stability and Tribological Properties of Biolubricants Obtained from Castor Oil Fatty Acids and Isoamyl Alcohol\",\"authors\":\"Maria Marliete F. Melo Neta, Gustavo R. R. Lima, Philipe de O. Tavares, Igor de M. Figueredo, Weslley da S. Rocha, Paulo R. C. F. Ribeiro Filho, Célio L. Cavalcante, Francisco Murilo T. Luna\",\"doi\":\"10.3390/lubricants11110490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the thermo-oxidative stability and tribological behavior of bio-based lubricant samples synthesized from castor oil using isoamyl alcohol were evaluated. Initially, the compositional and physicochemical properties of the obtained samples were assessed using the 1H NMR, FTIR and ASTM methods. Oxidative stability of the samples was evaluated using the Rancimat method at 110 °C under air flow. The final biolubricant sample (BL2), obtained after esterification, epoxidation and oxirane rings opening reactions, presented an oxidation stability time (OST) of 14.3 h. The thermal stability was also evaluated by thermogravimetry (TG) from the mass variations under inert and oxidative atmosphere. BL2 showed higher thermal stability compared to the other samples, demonstrating higher decomposition temperatures in both inert (339.04 °C) and oxidative (338.47 °C) atmospheres, for a mass loss of 50%. The tribological properties of the samples were evaluated using a four-ball tribometer configuration. The BL1 and BL2 samples exhibited lower friction coefficients than the mineral oil sample (MOS) by 21.5% and 43.1%, respectively. Regarding wear, the observed wear scar diameter (WSD) was also lower in BL1 and BL2 compared to MOS by 5.2% and 40.4%, respectively. The results of the tribological evaluation suggest that both samples (BL1 and BL2) have promising potential for applications in lubricating machines.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"14 9\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11110490\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants11110490","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,以蓖麻油为原料,用异戊醇合成的生物基润滑油样品的热氧化稳定性和摩擦学行为进行了评价。首先,使用1H NMR, FTIR和ASTM方法评估所得样品的组成和物理化学性质。在110°C空气流动条件下,用rangimat法评价样品的氧化稳定性。经过酯化、环氧化和氧环开环反应得到的最终生物润滑剂样品(BL2)的氧化稳定时间(OST)为14.3 h。通过惰性气氛和氧化气氛下的质量变化,用热重法(TG)对其热稳定性进行了评价。与其他样品相比,BL2表现出更高的热稳定性,在惰性(339.04°C)和氧化(338.47°C)气氛下都表现出更高的分解温度,质量损失为50%。使用四球摩擦计配置评估样品的摩擦学性能。BL1和BL2样品的摩擦系数分别比矿物油样品(MOS)低21.5%和43.1%。在磨损方面,BL1和BL2的磨损疤痕直径(WSD)也分别比MOS低5.2%和40.4%。摩擦学评价结果表明,这两种样品(BL1和BL2)在润滑机械上具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermo-Oxidative Stability and Tribological Properties of Biolubricants Obtained from Castor Oil Fatty Acids and Isoamyl Alcohol
In this study, the thermo-oxidative stability and tribological behavior of bio-based lubricant samples synthesized from castor oil using isoamyl alcohol were evaluated. Initially, the compositional and physicochemical properties of the obtained samples were assessed using the 1H NMR, FTIR and ASTM methods. Oxidative stability of the samples was evaluated using the Rancimat method at 110 °C under air flow. The final biolubricant sample (BL2), obtained after esterification, epoxidation and oxirane rings opening reactions, presented an oxidation stability time (OST) of 14.3 h. The thermal stability was also evaluated by thermogravimetry (TG) from the mass variations under inert and oxidative atmosphere. BL2 showed higher thermal stability compared to the other samples, demonstrating higher decomposition temperatures in both inert (339.04 °C) and oxidative (338.47 °C) atmospheres, for a mass loss of 50%. The tribological properties of the samples were evaluated using a four-ball tribometer configuration. The BL1 and BL2 samples exhibited lower friction coefficients than the mineral oil sample (MOS) by 21.5% and 43.1%, respectively. Regarding wear, the observed wear scar diameter (WSD) was also lower in BL1 and BL2 compared to MOS by 5.2% and 40.4%, respectively. The results of the tribological evaluation suggest that both samples (BL1 and BL2) have promising potential for applications in lubricating machines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信