区间上素数定理的显式均值估计

IF 0.5 4区 数学 Q3 MATHEMATICS
MICHAELA CULLY-HUGILL, ADRIAN W. DUDEK
{"title":"区间上素数定理的显式均值估计","authors":"MICHAELA CULLY-HUGILL, ADRIAN W. DUDEK","doi":"10.1017/s1446788723000113","DOIUrl":null,"url":null,"abstract":"Abstract This paper gives an explicit version of Selberg’s mean-value estimate for the prime number theorem in intervals, assuming the Riemann hypothesis [25]. Two applications are given to short-interval results for primes and for Goldbach numbers. Under the Riemann hypothesis, we show there exists a prime in $(y,y+32\\,277\\log ^2 y]$ for at least half the $y\\in [x,2x]$ for all $x\\geq 2$ , and at least one Goldbach number in $(x,x+9696 \\log ^2 x]$ for all $x\\geq 2$ .","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN EXPLICIT MEAN-VALUE ESTIMATE FOR THE PRIME NUMBER THEOREM IN INTERVALS\",\"authors\":\"MICHAELA CULLY-HUGILL, ADRIAN W. DUDEK\",\"doi\":\"10.1017/s1446788723000113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper gives an explicit version of Selberg’s mean-value estimate for the prime number theorem in intervals, assuming the Riemann hypothesis [25]. Two applications are given to short-interval results for primes and for Goldbach numbers. Under the Riemann hypothesis, we show there exists a prime in $(y,y+32\\\\,277\\\\log ^2 y]$ for at least half the $y\\\\in [x,2x]$ for all $x\\\\geq 2$ , and at least one Goldbach number in $(x,x+9696 \\\\log ^2 x]$ for all $x\\\\geq 2$ .\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788723000113\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1446788723000113","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了区间内素数定理的Selberg中值估计的一个显式版本,假设Riemann假设[25]。给出了质数和哥德巴赫数的短区间结果的两个应用。在黎曼假设下,我们证明了存在一个素数 $(y,y+32\,277\log ^2 y]$ 至少有一半 $y\in [x,2x]$ 对所有人 $x\geq 2$ 至少有一个哥德巴赫数 $(x,x+9696 \log ^2 x]$ 对所有人 $x\geq 2$ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN EXPLICIT MEAN-VALUE ESTIMATE FOR THE PRIME NUMBER THEOREM IN INTERVALS
Abstract This paper gives an explicit version of Selberg’s mean-value estimate for the prime number theorem in intervals, assuming the Riemann hypothesis [25]. Two applications are given to short-interval results for primes and for Goldbach numbers. Under the Riemann hypothesis, we show there exists a prime in $(y,y+32\,277\log ^2 y]$ for at least half the $y\in [x,2x]$ for all $x\geq 2$ , and at least one Goldbach number in $(x,x+9696 \log ^2 x]$ for all $x\geq 2$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信