无人机旋翼气动声学与气动交叉验证实验研究

Q2 Engineering
Anna A. Kostek, Felix Lößle, Robin Wickersheim, Manuel Keßler, Ronan Boisard, Gabriel Reboul, Antonio Visingardi, Mattia Barbarino, Anthony D. Gardner
{"title":"无人机旋翼气动声学与气动交叉验证实验研究","authors":"Anna A. Kostek, Felix Lößle, Robin Wickersheim, Manuel Keßler, Ronan Boisard, Gabriel Reboul, Antonio Visingardi, Mattia Barbarino, Anthony D. Gardner","doi":"10.1007/s13272-023-00680-z","DOIUrl":null,"url":null,"abstract":"Abstract The study provided a base of comparison of known computational techniques with different fidelity levels for performance and noise prediction of a single, fixed-pitch UAV rotor operating with varying flight parameters. The range of aerodynamic tools included blade element theory, potential flow methods (UPM, RAMSYS), lifting-line method (PUMA) and Navier–Stokes solver (FLOWer). Obtained loading distributions served as input for aeroacoustic codes delivering noise estimation for the blade passing frequency on a plane below the rotor. The resulting forces and noise levels showed satisfactory agreement with experimental data; however, differences in accuracy could be noticed depending on the computational method applied. The wake influence on the results was estimated based on vortex trajectories from simulations and those visible in background-oriented schlieren (BOS) pictures. The analysis of scattering effects showed that influence of ground and rotor platform on aeroacoustic results was observable even for low frequencies.","PeriodicalId":38083,"journal":{"name":"CEAS Aeronautical Journal","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of UAV rotor aeroacoustics and aerodynamics with computational cross-validation\",\"authors\":\"Anna A. Kostek, Felix Lößle, Robin Wickersheim, Manuel Keßler, Ronan Boisard, Gabriel Reboul, Antonio Visingardi, Mattia Barbarino, Anthony D. Gardner\",\"doi\":\"10.1007/s13272-023-00680-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The study provided a base of comparison of known computational techniques with different fidelity levels for performance and noise prediction of a single, fixed-pitch UAV rotor operating with varying flight parameters. The range of aerodynamic tools included blade element theory, potential flow methods (UPM, RAMSYS), lifting-line method (PUMA) and Navier–Stokes solver (FLOWer). Obtained loading distributions served as input for aeroacoustic codes delivering noise estimation for the blade passing frequency on a plane below the rotor. The resulting forces and noise levels showed satisfactory agreement with experimental data; however, differences in accuracy could be noticed depending on the computational method applied. The wake influence on the results was estimated based on vortex trajectories from simulations and those visible in background-oriented schlieren (BOS) pictures. The analysis of scattering effects showed that influence of ground and rotor platform on aeroacoustic results was observable even for low frequencies.\",\"PeriodicalId\":38083,\"journal\":{\"name\":\"CEAS Aeronautical Journal\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEAS Aeronautical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13272-023-00680-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEAS Aeronautical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13272-023-00680-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

该研究为不同保真度的单定距无人机旋翼在不同飞行参数下的性能和噪声预测提供了比较已知计算技术的基础。气动工具的范围包括叶片单元理论,势流法(UPM, RAMSYS),升力线法(PUMA)和Navier-Stokes求解器(FLOWer)。获得的载荷分布作为气动声学代码的输入,提供叶片在转子下方平面上通过频率的噪声估计。所得的力和噪声级与实验数据吻合较好;然而,根据所采用的计算方法,可以注意到精度的差异。根据模拟得到的涡轨迹和背景定向纹影(BOS)图像中可见的涡轨迹估计了尾迹对结果的影响。对散射效应的分析表明,即使在低频情况下,地面和转子平台对气动声学结果的影响也很明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental investigation of UAV rotor aeroacoustics and aerodynamics with computational cross-validation
Abstract The study provided a base of comparison of known computational techniques with different fidelity levels for performance and noise prediction of a single, fixed-pitch UAV rotor operating with varying flight parameters. The range of aerodynamic tools included blade element theory, potential flow methods (UPM, RAMSYS), lifting-line method (PUMA) and Navier–Stokes solver (FLOWer). Obtained loading distributions served as input for aeroacoustic codes delivering noise estimation for the blade passing frequency on a plane below the rotor. The resulting forces and noise levels showed satisfactory agreement with experimental data; however, differences in accuracy could be noticed depending on the computational method applied. The wake influence on the results was estimated based on vortex trajectories from simulations and those visible in background-oriented schlieren (BOS) pictures. The analysis of scattering effects showed that influence of ground and rotor platform on aeroacoustic results was observable even for low frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CEAS Aeronautical Journal
CEAS Aeronautical Journal Engineering-Aerospace Engineering
CiteScore
3.40
自引率
0.00%
发文量
53
期刊介绍: The CEAS Aeronautical Journal has been created under the umbrella of CEAS to provide an appropriate platform for excellent scientific publications submitted by scientists and engineers. The German Aerospace Center (DLR) and the European Space Agency (ESA) support the Journal.The Journal is devoted to publishing results and findings in all areas of aeronautics-related science and technology as well as reports on new developments in design and manufacturing of aircraft, rotorcraft, and unmanned aerial vehicles. Of interest are also (invited) in-depth reviews of the status of development in specific areas of relevance to aeronautics, and descriptions of the potential way forward. Typical disciplines of interest include flight physics and aerodynamics, aeroelasticity and structural mechanics, aeroacoustics, structures and materials, flight mechanics and flight control, systems, flight guidance, air traffic management, communication, navigation and surveillance, aircraft and aircraft design, rotorcraft and propulsion.The Journal publishes peer-reviewed original articles, (invited) reviews and short communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信