{"title":"基于云污染参考图像的改进颜色一致性优化方法","authors":"Zhonghua Hong, Changyou Xu, Xiaohua Tong, Shijie Liu, Ruyan Zhou, Haiyan Pan, Yun Zhang, Yanling Han, Jing Wang, Shuhu Yang","doi":"10.1080/15481603.2023.2259559","DOIUrl":null,"url":null,"abstract":"Optimizing color consistency across multiple images is a crucial step in creating accurate digital orthophoto maps (DOMs). However, current color balance methods that rely on a reference image are susceptible to cloud and cloud shadow interference, making it challenging to ensure color fidelity and a uniform color transition between images. To address these issues, an improved method for color consistency optimization has been proposed to enhance image quality using optimized low-resolution reference images. Initially, the original image is utilized to reconstruct areas affected by clouds or cloud shadows on the reference image. For seamless cloning, a Poisson blending algorithm is employed to minimize color differences between reconstructed and other regions. Subsequently, based on a weighting approach, the high-frequency information obtained through Gaussian and bilateral filtering is superimposed to smooth the image boundary and ensure color continuity between images. Finally, local linear models are constructed to correct image color based on the optimized reference and down-sampled images. To validate the robustness of this approach, we tested it on two challenging datasets covering a wide area. Compared to state-of-the-art methods, our approach offers significant advantages in both quantitative indicators and visual quality.","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"1 1","pages":"0"},"PeriodicalIF":6.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved color consistency optimization method based on the reference image contaminated by clouds\",\"authors\":\"Zhonghua Hong, Changyou Xu, Xiaohua Tong, Shijie Liu, Ruyan Zhou, Haiyan Pan, Yun Zhang, Yanling Han, Jing Wang, Shuhu Yang\",\"doi\":\"10.1080/15481603.2023.2259559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizing color consistency across multiple images is a crucial step in creating accurate digital orthophoto maps (DOMs). However, current color balance methods that rely on a reference image are susceptible to cloud and cloud shadow interference, making it challenging to ensure color fidelity and a uniform color transition between images. To address these issues, an improved method for color consistency optimization has been proposed to enhance image quality using optimized low-resolution reference images. Initially, the original image is utilized to reconstruct areas affected by clouds or cloud shadows on the reference image. For seamless cloning, a Poisson blending algorithm is employed to minimize color differences between reconstructed and other regions. Subsequently, based on a weighting approach, the high-frequency information obtained through Gaussian and bilateral filtering is superimposed to smooth the image boundary and ensure color continuity between images. Finally, local linear models are constructed to correct image color based on the optimized reference and down-sampled images. To validate the robustness of this approach, we tested it on two challenging datasets covering a wide area. Compared to state-of-the-art methods, our approach offers significant advantages in both quantitative indicators and visual quality.\",\"PeriodicalId\":55091,\"journal\":{\"name\":\"GIScience & Remote Sensing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIScience & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15481603.2023.2259559\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIScience & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15481603.2023.2259559","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
An improved color consistency optimization method based on the reference image contaminated by clouds
Optimizing color consistency across multiple images is a crucial step in creating accurate digital orthophoto maps (DOMs). However, current color balance methods that rely on a reference image are susceptible to cloud and cloud shadow interference, making it challenging to ensure color fidelity and a uniform color transition between images. To address these issues, an improved method for color consistency optimization has been proposed to enhance image quality using optimized low-resolution reference images. Initially, the original image is utilized to reconstruct areas affected by clouds or cloud shadows on the reference image. For seamless cloning, a Poisson blending algorithm is employed to minimize color differences between reconstructed and other regions. Subsequently, based on a weighting approach, the high-frequency information obtained through Gaussian and bilateral filtering is superimposed to smooth the image boundary and ensure color continuity between images. Finally, local linear models are constructed to correct image color based on the optimized reference and down-sampled images. To validate the robustness of this approach, we tested it on two challenging datasets covering a wide area. Compared to state-of-the-art methods, our approach offers significant advantages in both quantitative indicators and visual quality.
期刊介绍:
GIScience & Remote Sensing publishes original, peer-reviewed articles associated with geographic information systems (GIS), remote sensing of the environment (including digital image processing), geocomputation, spatial data mining, and geographic environmental modelling. Papers reflecting both basic and applied research are published.