服务科学前沿:数据驱动的收益管理:数据、模型和决策的相互作用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ningyuan Chen, Ming Hu
{"title":"服务科学前沿:数据驱动的收益管理:数据、模型和决策的相互作用","authors":"Ningyuan Chen, Ming Hu","doi":"10.1287/serv.2023.0322","DOIUrl":null,"url":null,"abstract":"Revenue management (RM) is the application of analytical methodologies and tools that predict consumer behavior and optimize product availability and prices to maximize a firm’s revenue or profit. In the last decade, data has been playing an increasingly crucial role in business decision making. As firms rely more on collected or acquired data to make business decisions, it brings opportunities and challenges to the RM research community. In this review paper, we systematically categorize the related literature by how a study is “driven” by data and focus on studies that explore the interplay between two or three of the elements: data, model, and decisions, in which the data element must be present. Specifically, we cover five data-driven RM research areas, including inference (data to model), predict then optimize (data to model to decisions), online learning (data to model to decisions to new data in a loop), end-to-end decision making (data directly to decisions), and experimental design (decisions to data to model). Finally, we point out future research directions. Funding: The research of N. Chen is partly supported by Natural Sciences and Engineering Research Council of Canada Discovery [Grant RGPIN-2020-04038]. The research of M. Hu is in part supported by Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2021-04295].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frontiers in Service Science: Data-Driven Revenue Management: The Interplay of Data, Model, and Decisions\",\"authors\":\"Ningyuan Chen, Ming Hu\",\"doi\":\"10.1287/serv.2023.0322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Revenue management (RM) is the application of analytical methodologies and tools that predict consumer behavior and optimize product availability and prices to maximize a firm’s revenue or profit. In the last decade, data has been playing an increasingly crucial role in business decision making. As firms rely more on collected or acquired data to make business decisions, it brings opportunities and challenges to the RM research community. In this review paper, we systematically categorize the related literature by how a study is “driven” by data and focus on studies that explore the interplay between two or three of the elements: data, model, and decisions, in which the data element must be present. Specifically, we cover five data-driven RM research areas, including inference (data to model), predict then optimize (data to model to decisions), online learning (data to model to decisions to new data in a loop), end-to-end decision making (data directly to decisions), and experimental design (decisions to data to model). Finally, we point out future research directions. Funding: The research of N. Chen is partly supported by Natural Sciences and Engineering Research Council of Canada Discovery [Grant RGPIN-2020-04038]. The research of M. Hu is in part supported by Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2021-04295].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/serv.2023.0322\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/serv.2023.0322","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

收益管理(RM)是分析方法和工具的应用,预测消费者行为,优化产品的可用性和价格,以最大限度地提高公司的收入或利润。在过去的十年中,数据在商业决策中扮演着越来越重要的角色。由于企业更多地依赖于收集或获得的数据来做出商业决策,这给RM研究界带来了机遇和挑战。在这篇综述文章中,我们根据研究如何被数据“驱动”来系统地对相关文献进行分类,并将重点放在探索两个或三个要素之间相互作用的研究上:数据、模型和决策,其中数据要素必须存在。具体来说,我们涵盖了五个数据驱动的RM研究领域,包括推理(数据到模型),预测然后优化(数据到模型到决策),在线学习(数据到模型到决策到循环中的新数据),端到端决策(数据直接到决策)和实验设计(决策到数据到模型)。最后,提出了今后的研究方向。项目资助:陈n .的部分研究得到了加拿大自然科学与工程研究委员会的资助[Grant RGPIN-2020-04038]。胡先生的研究得到了加拿大自然科学与工程研究委员会的部分支持[Grant RGPIN-2021-04295]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frontiers in Service Science: Data-Driven Revenue Management: The Interplay of Data, Model, and Decisions
Revenue management (RM) is the application of analytical methodologies and tools that predict consumer behavior and optimize product availability and prices to maximize a firm’s revenue or profit. In the last decade, data has been playing an increasingly crucial role in business decision making. As firms rely more on collected or acquired data to make business decisions, it brings opportunities and challenges to the RM research community. In this review paper, we systematically categorize the related literature by how a study is “driven” by data and focus on studies that explore the interplay between two or three of the elements: data, model, and decisions, in which the data element must be present. Specifically, we cover five data-driven RM research areas, including inference (data to model), predict then optimize (data to model to decisions), online learning (data to model to decisions to new data in a loop), end-to-end decision making (data directly to decisions), and experimental design (decisions to data to model). Finally, we point out future research directions. Funding: The research of N. Chen is partly supported by Natural Sciences and Engineering Research Council of Canada Discovery [Grant RGPIN-2020-04038]. The research of M. Hu is in part supported by Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2021-04295].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信