哈勃空间望远镜姿态控制与参数优化研究

IF 1 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION
Emre Sayin, Rahman Bitirgen, Ismail Bayezit
{"title":"哈勃空间望远镜姿态控制与参数优化研究","authors":"Emre Sayin, Rahman Bitirgen, Ismail Bayezit","doi":"10.2478/msr-2023-0019","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we build a satellite attitude Proportional-Integral-Derivative (PID) controlled system by using the Hubble Space Telescope (HST) parameters as a reference and tune its controller parameters using various tuning methods. First, we give the equations for the motion of a satellite. We elaborate the control structure as controller, actuator, dynamics, and kinematics subsystems and construct an external disturbance model. We use a reaction wheel assembly used in the HST with the same configuration as the actuator. We evaluate the performance of the linearization by comparing it with the nonlinear model output. By working on the linearized model, we tune the PID controller parameters using two different methods: “Model-Based Root Locus Tuning” and “Genetic Algorithm Based Tuning”. First, we obtain the controller parameters by manipulating the poles on the root locus plot of the linearized system. In addition, we use genetic algorithms to find the optimized controller values of the system. Finally, we compare the performances of the two methods based on their cost function values and find that the Genetic Algorithm-based tuned parameters are more fruitful in terms of the cost function value than the parameters obtained by the Root Locus-based tuning. However, it is found that the Root Locus-based tuning performs better in disturbance rejection.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"8 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attitude Control and Parameter Optimization: A Study on Hubble Space Telescope\",\"authors\":\"Emre Sayin, Rahman Bitirgen, Ismail Bayezit\",\"doi\":\"10.2478/msr-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we build a satellite attitude Proportional-Integral-Derivative (PID) controlled system by using the Hubble Space Telescope (HST) parameters as a reference and tune its controller parameters using various tuning methods. First, we give the equations for the motion of a satellite. We elaborate the control structure as controller, actuator, dynamics, and kinematics subsystems and construct an external disturbance model. We use a reaction wheel assembly used in the HST with the same configuration as the actuator. We evaluate the performance of the linearization by comparing it with the nonlinear model output. By working on the linearized model, we tune the PID controller parameters using two different methods: “Model-Based Root Locus Tuning” and “Genetic Algorithm Based Tuning”. First, we obtain the controller parameters by manipulating the poles on the root locus plot of the linearized system. In addition, we use genetic algorithms to find the optimized controller values of the system. Finally, we compare the performances of the two methods based on their cost function values and find that the Genetic Algorithm-based tuned parameters are more fruitful in terms of the cost function value than the parameters obtained by the Root Locus-based tuning. However, it is found that the Root Locus-based tuning performs better in disturbance rejection.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2023-0019\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/msr-2023-0019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文以哈勃空间望远镜(HST)参数为参考,构建了卫星姿态比例-积分-导数(PID)控制系统,并采用多种整定方法对其控制器参数进行了整定。首先,我们给出了卫星运动的方程。将控制结构细化为控制器子系统、执行器子系统、动力学子系统和运动学子系统,并建立了外部干扰模型。我们使用HST中使用的反作用轮组件,其配置与执行器相同。我们通过与非线性模型输出的比较来评估线性化的性能。通过处理线性化模型,我们使用两种不同的方法来调整PID控制器参数:“基于模型的根轨迹调整”和“基于遗传算法的调整”。首先,通过对线性化系统根轨迹图上的极点进行处理,得到控制器参数。此外,我们使用遗传算法来寻找系统的最优控制器值。最后,我们根据代价函数值比较了两种方法的性能,发现基于遗传算法的调优参数在代价函数值方面比基于根位点调优获得的参数更富有成效。然而,研究发现基于根位点的调谐在抑制干扰方面表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attitude Control and Parameter Optimization: A Study on Hubble Space Telescope
Abstract In this work, we build a satellite attitude Proportional-Integral-Derivative (PID) controlled system by using the Hubble Space Telescope (HST) parameters as a reference and tune its controller parameters using various tuning methods. First, we give the equations for the motion of a satellite. We elaborate the control structure as controller, actuator, dynamics, and kinematics subsystems and construct an external disturbance model. We use a reaction wheel assembly used in the HST with the same configuration as the actuator. We evaluate the performance of the linearization by comparing it with the nonlinear model output. By working on the linearized model, we tune the PID controller parameters using two different methods: “Model-Based Root Locus Tuning” and “Genetic Algorithm Based Tuning”. First, we obtain the controller parameters by manipulating the poles on the root locus plot of the linearized system. In addition, we use genetic algorithms to find the optimized controller values of the system. Finally, we compare the performances of the two methods based on their cost function values and find that the Genetic Algorithm-based tuned parameters are more fruitful in terms of the cost function value than the parameters obtained by the Root Locus-based tuning. However, it is found that the Root Locus-based tuning performs better in disturbance rejection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Science Review
Measurement Science Review INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.00
自引率
11.10%
发文量
37
审稿时长
4.8 months
期刊介绍: - theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信