加速持久性有机污染物(POP)样品制备的新技术

IF 0.7 4区 化学 Q4 CHEMISTRY, ANALYTICAL
Chris Shevlin, Rahmat Ullah
{"title":"加速持久性有机污染物(POP)样品制备的新技术","authors":"Chris Shevlin, Rahmat Ullah","doi":"10.56530/lcgc.na.fu6271f8","DOIUrl":null,"url":null,"abstract":"Despite best efforts in 2004 to ban their use, persistent organic pollutants (POPs) remain prevalent across the globe, including in soil. To protect human health, agricultural and environmental soil require careful investigation, but preparing samples for gas chromatography–mass spectrometry (GC–MS) analysis is time-consuming, and mostly done manually. Accelerated solvent extraction (ASE) has been the preferred preparation method for the past few decades, and while we have seen advancements, the method remains manual. Now, new technology offers parallel sample processing, combined extraction and evaporation, and automation—leading to faster analysis, reduced risk of error, and freed-up time for personnel.","PeriodicalId":17992,"journal":{"name":"Lc Gc North America","volume":"374 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Technologies That Accelerate Persistent Organic Pollutant (POP) Sample Preparation\",\"authors\":\"Chris Shevlin, Rahmat Ullah\",\"doi\":\"10.56530/lcgc.na.fu6271f8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite best efforts in 2004 to ban their use, persistent organic pollutants (POPs) remain prevalent across the globe, including in soil. To protect human health, agricultural and environmental soil require careful investigation, but preparing samples for gas chromatography–mass spectrometry (GC–MS) analysis is time-consuming, and mostly done manually. Accelerated solvent extraction (ASE) has been the preferred preparation method for the past few decades, and while we have seen advancements, the method remains manual. Now, new technology offers parallel sample processing, combined extraction and evaporation, and automation—leading to faster analysis, reduced risk of error, and freed-up time for personnel.\",\"PeriodicalId\":17992,\"journal\":{\"name\":\"Lc Gc North America\",\"volume\":\"374 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lc Gc North America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56530/lcgc.na.fu6271f8\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lc Gc North America","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56530/lcgc.na.fu6271f8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管2004年为禁止使用持久性有机污染物作出了最大努力,但持久性有机污染物在全球范围内,包括在土壤中,仍然普遍存在。为了保护人类健康,农业和环境土壤需要仔细调查,但是准备气相色谱-质谱(GC-MS)分析的样品是耗时的,而且大多是手工完成的。在过去的几十年里,加速溶剂萃取(ASE)一直是首选的制备方法,虽然我们看到了进步,但该方法仍然是手动的。现在,新技术提供了并行样品处理、联合提取和蒸发以及自动化,从而加快了分析速度,降低了错误风险,并为人员腾出了时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Technologies That Accelerate Persistent Organic Pollutant (POP) Sample Preparation
Despite best efforts in 2004 to ban their use, persistent organic pollutants (POPs) remain prevalent across the globe, including in soil. To protect human health, agricultural and environmental soil require careful investigation, but preparing samples for gas chromatography–mass spectrometry (GC–MS) analysis is time-consuming, and mostly done manually. Accelerated solvent extraction (ASE) has been the preferred preparation method for the past few decades, and while we have seen advancements, the method remains manual. Now, new technology offers parallel sample processing, combined extraction and evaporation, and automation—leading to faster analysis, reduced risk of error, and freed-up time for personnel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lc Gc North America
Lc Gc North America 化学-分析化学
CiteScore
1.00
自引率
55.60%
发文量
0
审稿时长
2 months
期刊介绍: Founded in 1983, LCGC is the leading provider of digital and print content to the separation science market, enhancing the productivity, efficiency, and the overall value of separation techniques globally. Founded in 1983, LCGC is the leading provider of digital and print content to the separation science market, enhancing the productivity, efficiency, and the overall value of separation techniques globally. With our commitment to editorial excellence we have pioneered innovation across a broad portfolio of digital and print platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信