Haiyang Wang, Miaomiao Liang, Min Li, Yang Qu, Zongcheng Miao
{"title":"表面变质硫化镍可提高水体储能的电化学性能","authors":"Haiyang Wang, Miaomiao Liang, Min Li, Yang Qu, Zongcheng Miao","doi":"10.1002/bte2.20230035","DOIUrl":null,"url":null,"abstract":"<p>The ingenious structural design of electrode materials has a great influence on boosting the integrated conductivity and improving the electrochemical behavior of energy storage equipment. In this work, a surface-amorphized sandwich-type Ni<sub>3</sub>S<sub>2</sub> nanosheet is synthesized by an easy hydrothermal and solution treatment technique. Because of the in-built defect-rich feature of the amorphous Ni<sub>3</sub>S<sub>2</sub> layer, the constructed crystalline/amorphous heterointerface as well as dual nanopore structure of Ni<sub>3</sub>S<sub>2</sub> nanosheet, the electron/ion transport and interfacial charge transfer is boosted, which contribute to high ionic conductivity and low resistance of the SA-Ni<sub>3</sub>S<sub>2</sub> electrode. The SA-Ni<sub>3</sub>S<sub>2</sub> electrode shows high specific capacitance (1767.6 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>); the SA-Ni<sub>3</sub>S<sub>2</sub>//AC device delivers high specific capacitance (131.2 F g<sup>−1</sup> at 0.2 A g<sup>−1</sup>) and outstanding cycle stability (75% capacitance retention after 10000 cycles). In Ni-Zn battery measurement, the SA-Ni<sub>3</sub>S<sub>2</sub>//Zn exhibits satisfying specific capacity (211.2 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup>) and cycle durability (68% capacity decay after 2000 cycles). The results imply that the rational design of surface-amorphized heterostructure is helpful for fabrication of electrode materials with high electrochemical performance in energy storage applications.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230035","citationCount":"0","resultStr":"{\"title\":\"Surface-amorphized nickel sulfide with boosted electrochemical performance for aqueous energy storage\",\"authors\":\"Haiyang Wang, Miaomiao Liang, Min Li, Yang Qu, Zongcheng Miao\",\"doi\":\"10.1002/bte2.20230035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The ingenious structural design of electrode materials has a great influence on boosting the integrated conductivity and improving the electrochemical behavior of energy storage equipment. In this work, a surface-amorphized sandwich-type Ni<sub>3</sub>S<sub>2</sub> nanosheet is synthesized by an easy hydrothermal and solution treatment technique. Because of the in-built defect-rich feature of the amorphous Ni<sub>3</sub>S<sub>2</sub> layer, the constructed crystalline/amorphous heterointerface as well as dual nanopore structure of Ni<sub>3</sub>S<sub>2</sub> nanosheet, the electron/ion transport and interfacial charge transfer is boosted, which contribute to high ionic conductivity and low resistance of the SA-Ni<sub>3</sub>S<sub>2</sub> electrode. The SA-Ni<sub>3</sub>S<sub>2</sub> electrode shows high specific capacitance (1767.6 F g<sup>−1</sup> at 0.5 A g<sup>−1</sup>); the SA-Ni<sub>3</sub>S<sub>2</sub>//AC device delivers high specific capacitance (131.2 F g<sup>−1</sup> at 0.2 A g<sup>−1</sup>) and outstanding cycle stability (75% capacitance retention after 10000 cycles). In Ni-Zn battery measurement, the SA-Ni<sub>3</sub>S<sub>2</sub>//Zn exhibits satisfying specific capacity (211.2 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup>) and cycle durability (68% capacity decay after 2000 cycles). The results imply that the rational design of surface-amorphized heterostructure is helpful for fabrication of electrode materials with high electrochemical performance in energy storage applications.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
巧妙的电极材料结构设计对提高储能设备的综合电导率和改善其电化学性能具有重要影响。本研究采用简单的水热和溶液处理技术合成了一种表面变形的夹层型 Ni3S2 纳米片。由于非晶态 Ni3S2 层的内在富缺陷特征、晶体/非晶态异质界面的构建以及 Ni3S2 纳米片的双纳米孔结构,促进了电子/离子传输和界面电荷转移,从而使 SA-Ni3S2 电极具有高离子电导率和低电阻的特性。SA-Ni3S2 电极具有高比电容(0.5 A g-1 时为 1767.6 F g-1);SA-Ni3S2//AC 器件具有高比电容(0.2 A g-1 时为 131.2 F g-1)和出色的循环稳定性(10000 次循环后电容保持率为 75%)。在镍锌电池测量中,SA-Ni3S2//Zn 表现出令人满意的比容量(0.5 A g-1 时为 211.2 mAh g-1)和循环耐久性(2000 次循环后容量衰减 68%)。这些结果表明,合理设计表面变形异质结构有助于在储能应用中制造具有高电化学性能的电极材料。
Surface-amorphized nickel sulfide with boosted electrochemical performance for aqueous energy storage
The ingenious structural design of electrode materials has a great influence on boosting the integrated conductivity and improving the electrochemical behavior of energy storage equipment. In this work, a surface-amorphized sandwich-type Ni3S2 nanosheet is synthesized by an easy hydrothermal and solution treatment technique. Because of the in-built defect-rich feature of the amorphous Ni3S2 layer, the constructed crystalline/amorphous heterointerface as well as dual nanopore structure of Ni3S2 nanosheet, the electron/ion transport and interfacial charge transfer is boosted, which contribute to high ionic conductivity and low resistance of the SA-Ni3S2 electrode. The SA-Ni3S2 electrode shows high specific capacitance (1767.6 F g−1 at 0.5 A g−1); the SA-Ni3S2//AC device delivers high specific capacitance (131.2 F g−1 at 0.2 A g−1) and outstanding cycle stability (75% capacitance retention after 10000 cycles). In Ni-Zn battery measurement, the SA-Ni3S2//Zn exhibits satisfying specific capacity (211.2 mAh g−1 at 0.5 A g−1) and cycle durability (68% capacity decay after 2000 cycles). The results imply that the rational design of surface-amorphized heterostructure is helpful for fabrication of electrode materials with high electrochemical performance in energy storage applications.