将优化控制技术应用于太空骑手的伞翼飞行

Michele Lucrezia
{"title":"将优化控制技术应用于太空骑手的伞翼飞行","authors":"Michele Lucrezia","doi":"10.1007/s42496-023-00176-3","DOIUrl":null,"url":null,"abstract":"<div><p>The Space Rider program falls within the framework of ESA activities for the design of affordable and sustainable reusable aerospace vehicles. Among the greatest challenges for this mission is the design of the Guidance, Navigation and Control (GNC) subsystem for the re-entry phase. The final stage of the latter consists of an autonomous flight under parafoil that must guarantee a smooth and precise landing. To ensure compliance with the requirements in terms of landing accuracy and ground speed constraints at touchdown, the GNC subsystem must be able to counterbalance the effect of the wind during the flight and guarantee an upwind landing. A key role in this regard is played by what is commonly referred to as the Terminal Guidance phase i.e., the final part of the descent under parafoil where the vehicle performs the final approach to the designated landing point. The study presented in this work has been developed at the AOCS/GNC department of SENER Aeroespacial and the objective is to design a complete solution for managing the Terminal Guidance phase of a Space Rider-type case. This includes a guidance algorithm based on a direct method to generate an optimal solution for the trajectory, a path-tracking procedure, and a guidance logic that allows for a correct implementation within the whole GNC software. The optimal terminal guidance algorithm has then been implemented within the six-degrees-of-freedom simulator developed by SENER Aeroespacial demonstrating an excellent functioning for the proposed problem.</p></div>","PeriodicalId":100054,"journal":{"name":"Aerotecnica Missili & Spazio","volume":"103 2","pages":"117 - 128"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Optimal Control Techniques to the Parafoil Flight of Space Rider\",\"authors\":\"Michele Lucrezia\",\"doi\":\"10.1007/s42496-023-00176-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Space Rider program falls within the framework of ESA activities for the design of affordable and sustainable reusable aerospace vehicles. Among the greatest challenges for this mission is the design of the Guidance, Navigation and Control (GNC) subsystem for the re-entry phase. The final stage of the latter consists of an autonomous flight under parafoil that must guarantee a smooth and precise landing. To ensure compliance with the requirements in terms of landing accuracy and ground speed constraints at touchdown, the GNC subsystem must be able to counterbalance the effect of the wind during the flight and guarantee an upwind landing. A key role in this regard is played by what is commonly referred to as the Terminal Guidance phase i.e., the final part of the descent under parafoil where the vehicle performs the final approach to the designated landing point. The study presented in this work has been developed at the AOCS/GNC department of SENER Aeroespacial and the objective is to design a complete solution for managing the Terminal Guidance phase of a Space Rider-type case. This includes a guidance algorithm based on a direct method to generate an optimal solution for the trajectory, a path-tracking procedure, and a guidance logic that allows for a correct implementation within the whole GNC software. The optimal terminal guidance algorithm has then been implemented within the six-degrees-of-freedom simulator developed by SENER Aeroespacial demonstrating an excellent functioning for the proposed problem.</p></div>\",\"PeriodicalId\":100054,\"journal\":{\"name\":\"Aerotecnica Missili & Spazio\",\"volume\":\"103 2\",\"pages\":\"117 - 128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerotecnica Missili & Spazio\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42496-023-00176-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerotecnica Missili & Spazio","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42496-023-00176-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

太空骑士计划属于欧空局设计可负担和可持续的可重复使用航空飞行器的活动框架。这项任务面临的最大挑战之一是设计重返大气层阶段的制导、导航和控制(GNC)子系统。后者的最后阶段包括在副伞下的自主飞行,必须保证平稳和精确的着陆。为了确保符合着陆精度和着陆时地面速度限制方面的要求,GNC 子系统必须能够在飞行过程中抵消风的影响,并保证顺风着陆。在这方面起关键作用的是通常所说的终端引导阶段,即飞行器在副翼下下降的最后部分,在这一阶段飞行器将最终接近指定着陆点。这项研究是在 SENER Aeroespacial 的 AOCS/GNC 部门进行的,目的是设计一套完整的解决方案,用于管理太空骑手类型案例的终端制导阶段。这包括基于直接方法的制导算法,以生成轨迹的最优解、路径跟踪程序和制导逻辑,以便在整个 GNC 软件中正确实施。最佳终端制导算法随后在 SENER Aeroespacial 开发的六自由度模拟器中实施,显示了对所提问题的出色功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Optimal Control Techniques to the Parafoil Flight of Space Rider

The Space Rider program falls within the framework of ESA activities for the design of affordable and sustainable reusable aerospace vehicles. Among the greatest challenges for this mission is the design of the Guidance, Navigation and Control (GNC) subsystem for the re-entry phase. The final stage of the latter consists of an autonomous flight under parafoil that must guarantee a smooth and precise landing. To ensure compliance with the requirements in terms of landing accuracy and ground speed constraints at touchdown, the GNC subsystem must be able to counterbalance the effect of the wind during the flight and guarantee an upwind landing. A key role in this regard is played by what is commonly referred to as the Terminal Guidance phase i.e., the final part of the descent under parafoil where the vehicle performs the final approach to the designated landing point. The study presented in this work has been developed at the AOCS/GNC department of SENER Aeroespacial and the objective is to design a complete solution for managing the Terminal Guidance phase of a Space Rider-type case. This includes a guidance algorithm based on a direct method to generate an optimal solution for the trajectory, a path-tracking procedure, and a guidance logic that allows for a correct implementation within the whole GNC software. The optimal terminal guidance algorithm has then been implemented within the six-degrees-of-freedom simulator developed by SENER Aeroespacial demonstrating an excellent functioning for the proposed problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信