John C. Yannotty, Thomas J. Santner, Richard J. Furnstahl, Matthew T. Pratola
{"title":"使用贝叶斯加性回归树进行模型混合","authors":"John C. Yannotty, Thomas J. Santner, Richard J. Furnstahl, Matthew T. Pratola","doi":"10.1080/00401706.2023.2257765","DOIUrl":null,"url":null,"abstract":"In modern computer experiment applications, one often encounters the situation where various models of a physical system are considered, each implemented as a simulator on a computer. An important question in such a setting is determining the best simulator, or the best combination of simulators, to use for prediction and inference. Bayesian model averaging (BMA) and stacking are two statistical approaches used to account for model uncertainty by aggregating a set of predictions through a simple linear combination or weighted average. Bayesian model mixing (BMM) extends these ideas to capture the localized behavior of each simulator by defining input-dependent weights. One possibility is to define the relationship between inputs and the weight functions using a flexible non-parametric model that learns the local strengths and weaknesses of each simulator. This paper proposes a BMM model based on Bayesian Additive Regression Trees (BART). The proposed methodology is applied to combine predictions from Effective Field Theories (EFTs) associated with a motivating nuclear physics application. Supplementary Material is available online. Source code is available at https://github.com/jcyannotty/OpenBT.","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":"7 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Model Mixing Using Bayesian Additive Regression Trees\",\"authors\":\"John C. Yannotty, Thomas J. Santner, Richard J. Furnstahl, Matthew T. Pratola\",\"doi\":\"10.1080/00401706.2023.2257765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern computer experiment applications, one often encounters the situation where various models of a physical system are considered, each implemented as a simulator on a computer. An important question in such a setting is determining the best simulator, or the best combination of simulators, to use for prediction and inference. Bayesian model averaging (BMA) and stacking are two statistical approaches used to account for model uncertainty by aggregating a set of predictions through a simple linear combination or weighted average. Bayesian model mixing (BMM) extends these ideas to capture the localized behavior of each simulator by defining input-dependent weights. One possibility is to define the relationship between inputs and the weight functions using a flexible non-parametric model that learns the local strengths and weaknesses of each simulator. This paper proposes a BMM model based on Bayesian Additive Regression Trees (BART). The proposed methodology is applied to combine predictions from Effective Field Theories (EFTs) associated with a motivating nuclear physics application. Supplementary Material is available online. Source code is available at https://github.com/jcyannotty/OpenBT.\",\"PeriodicalId\":22208,\"journal\":{\"name\":\"Technometrics\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00401706.2023.2257765\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00401706.2023.2257765","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Model Mixing Using Bayesian Additive Regression Trees
In modern computer experiment applications, one often encounters the situation where various models of a physical system are considered, each implemented as a simulator on a computer. An important question in such a setting is determining the best simulator, or the best combination of simulators, to use for prediction and inference. Bayesian model averaging (BMA) and stacking are two statistical approaches used to account for model uncertainty by aggregating a set of predictions through a simple linear combination or weighted average. Bayesian model mixing (BMM) extends these ideas to capture the localized behavior of each simulator by defining input-dependent weights. One possibility is to define the relationship between inputs and the weight functions using a flexible non-parametric model that learns the local strengths and weaknesses of each simulator. This paper proposes a BMM model based on Bayesian Additive Regression Trees (BART). The proposed methodology is applied to combine predictions from Effective Field Theories (EFTs) associated with a motivating nuclear physics application. Supplementary Material is available online. Source code is available at https://github.com/jcyannotty/OpenBT.
期刊介绍:
Technometrics is a Journal of Statistics for the Physical, Chemical, and Engineering Sciences, and is published Quarterly by the American Society for Quality and the American Statistical Association.Since its inception in 1959, the mission of Technometrics has been to contribute to the development and use of statistical methods in the physical, chemical, and engineering sciences.