{"title":"使用 BEOL 电极在 CMOS 嵌入式微流体中进行阻抗传感","authors":"Wei-Yang Weng;Jun-Chau Chien","doi":"10.1109/JMEMS.2023.3326973","DOIUrl":null,"url":null,"abstract":"This paper describes a novel CMOS-embedded microfluidics platform featuring on-chip impedance-sensing electrodes. The platform employs a single-step wet etching process, removing the CMOS back-end-of-line (BEOL) routing metals, to create hollow fluidic channels that can be closely integrated with active circuits. We optimize the process parameters and improve the etch rate by 10Í through screening different metal etchants and applying hydraulic pressure to enhance the etchant byproduct diffusion rates. To integrate on-chip electrodes for impedance sensing, we explore various strategies and present “via” electrodes that maintain their integrity in the etching process while preserving detection sensitivity. We also investigate the long-term reliability of the platform. Finally, we demonstrate the efficacy of impedance sensing using ionic solutions of varying strengths. [2023-0119]","PeriodicalId":16621,"journal":{"name":"Journal of Microelectromechanical Systems","volume":"33 1","pages":"110-117"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impedance Sensing in CMOS-Embedded Microfluidics Using BEOL Electrodes\",\"authors\":\"Wei-Yang Weng;Jun-Chau Chien\",\"doi\":\"10.1109/JMEMS.2023.3326973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel CMOS-embedded microfluidics platform featuring on-chip impedance-sensing electrodes. The platform employs a single-step wet etching process, removing the CMOS back-end-of-line (BEOL) routing metals, to create hollow fluidic channels that can be closely integrated with active circuits. We optimize the process parameters and improve the etch rate by 10Í through screening different metal etchants and applying hydraulic pressure to enhance the etchant byproduct diffusion rates. To integrate on-chip electrodes for impedance sensing, we explore various strategies and present “via” electrodes that maintain their integrity in the etching process while preserving detection sensitivity. We also investigate the long-term reliability of the platform. Finally, we demonstrate the efficacy of impedance sensing using ionic solutions of varying strengths. [2023-0119]\",\"PeriodicalId\":16621,\"journal\":{\"name\":\"Journal of Microelectromechanical Systems\",\"volume\":\"33 1\",\"pages\":\"110-117\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10308753/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectromechanical Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10308753/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Impedance Sensing in CMOS-Embedded Microfluidics Using BEOL Electrodes
This paper describes a novel CMOS-embedded microfluidics platform featuring on-chip impedance-sensing electrodes. The platform employs a single-step wet etching process, removing the CMOS back-end-of-line (BEOL) routing metals, to create hollow fluidic channels that can be closely integrated with active circuits. We optimize the process parameters and improve the etch rate by 10Í through screening different metal etchants and applying hydraulic pressure to enhance the etchant byproduct diffusion rates. To integrate on-chip electrodes for impedance sensing, we explore various strategies and present “via” electrodes that maintain their integrity in the etching process while preserving detection sensitivity. We also investigate the long-term reliability of the platform. Finally, we demonstrate the efficacy of impedance sensing using ionic solutions of varying strengths. [2023-0119]
期刊介绍:
The topics of interest include, but are not limited to: devices ranging in size from microns to millimeters, IC-compatible fabrication techniques, other fabrication techniques, measurement of micro phenomena, theoretical results, new materials and designs, micro actuators, micro robots, micro batteries, bearings, wear, reliability, electrical interconnections, micro telemanipulation, and standards appropriate to MEMS. Application examples and application oriented devices in fluidics, optics, bio-medical engineering, etc., are also of central interest.