Christina Makkar, Maria Dasios, Nicole Laliberté, Fiona Rawle
{"title":"科学“失败”:从科学失败中学习的历史案例库","authors":"Christina Makkar, Maria Dasios, Nicole Laliberté, Fiona Rawle","doi":"10.24918/cs.2023.39","DOIUrl":null,"url":null,"abstract":"Learning from failure is critically important to the processes of scientific inquiry, discovery, and invention. However, students are not routinely taught how to reflect on, learn from, and ultimately embrace failure, and relatively few curricular examples and teaching tools exist for reflecting on failure and its relationship to discovery. In fact, many science textbooks are stories of past successes in science and often neglect the failures or missteps that led to major discoveries. Yet examples of failures, errors, setbacks, and accidents that led to innovation and discovery abound for use in instruction. Moreover, research suggests that students benefit when failure is openly discussed and reframed as integral to learning. We have curated a bank of examples as a teaching tool to encourage and guide discussions about learning from failure. We highlight systemic barriers to embracing failure and note resources (time, funding, security, cultural capital) that facilitate second chances; we cannot encourage students to embrace failure without acknowledging these needs. Nevertheless, reflecting on failure in science courses can hone the evaluative and creative capacities of students, aid in the development of procedural and metacognitive knowledge, and invite improvement in many science process skills including research, analysis, and experimental design and implementation. Importantly, reflecting on failure can also decrease stigma, promote resilience, and positively impact student wellbeing.","PeriodicalId":72713,"journal":{"name":"CourseSource","volume":"306 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Science “Fails”: A Bank of Historical Examples for Learning From Failure in Science\",\"authors\":\"Christina Makkar, Maria Dasios, Nicole Laliberté, Fiona Rawle\",\"doi\":\"10.24918/cs.2023.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning from failure is critically important to the processes of scientific inquiry, discovery, and invention. However, students are not routinely taught how to reflect on, learn from, and ultimately embrace failure, and relatively few curricular examples and teaching tools exist for reflecting on failure and its relationship to discovery. In fact, many science textbooks are stories of past successes in science and often neglect the failures or missteps that led to major discoveries. Yet examples of failures, errors, setbacks, and accidents that led to innovation and discovery abound for use in instruction. Moreover, research suggests that students benefit when failure is openly discussed and reframed as integral to learning. We have curated a bank of examples as a teaching tool to encourage and guide discussions about learning from failure. We highlight systemic barriers to embracing failure and note resources (time, funding, security, cultural capital) that facilitate second chances; we cannot encourage students to embrace failure without acknowledging these needs. Nevertheless, reflecting on failure in science courses can hone the evaluative and creative capacities of students, aid in the development of procedural and metacognitive knowledge, and invite improvement in many science process skills including research, analysis, and experimental design and implementation. Importantly, reflecting on failure can also decrease stigma, promote resilience, and positively impact student wellbeing.\",\"PeriodicalId\":72713,\"journal\":{\"name\":\"CourseSource\",\"volume\":\"306 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CourseSource\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24918/cs.2023.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CourseSource","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24918/cs.2023.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Science “Fails”: A Bank of Historical Examples for Learning From Failure in Science
Learning from failure is critically important to the processes of scientific inquiry, discovery, and invention. However, students are not routinely taught how to reflect on, learn from, and ultimately embrace failure, and relatively few curricular examples and teaching tools exist for reflecting on failure and its relationship to discovery. In fact, many science textbooks are stories of past successes in science and often neglect the failures or missteps that led to major discoveries. Yet examples of failures, errors, setbacks, and accidents that led to innovation and discovery abound for use in instruction. Moreover, research suggests that students benefit when failure is openly discussed and reframed as integral to learning. We have curated a bank of examples as a teaching tool to encourage and guide discussions about learning from failure. We highlight systemic barriers to embracing failure and note resources (time, funding, security, cultural capital) that facilitate second chances; we cannot encourage students to embrace failure without acknowledging these needs. Nevertheless, reflecting on failure in science courses can hone the evaluative and creative capacities of students, aid in the development of procedural and metacognitive knowledge, and invite improvement in many science process skills including research, analysis, and experimental design and implementation. Importantly, reflecting on failure can also decrease stigma, promote resilience, and positively impact student wellbeing.