二维非线性分数阶Hadamard积分方程的高阶均匀精确数值格式

IF 1.8 3区 数学 Q1 MATHEMATICS
Ziqiang Wang, Kaihao Shi, Xingyang Ye, Junying Cao
{"title":"二维非线性分数阶Hadamard积分方程的高阶均匀精确数值格式","authors":"Ziqiang Wang, Kaihao Shi, Xingyang Ye, Junying Cao","doi":"10.3934/math.20231523","DOIUrl":null,"url":null,"abstract":"<abstract><p>In this paper, we consider a higher-order numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations with uniform accuracy. First, the high-order numerical scheme is constructed by using piecewise biquadratic logarithmic interpolations to approximate an integral function based on the idea of the modified block-by-block method. Secondly, for $ 0 &amp;lt; \\gamma, \\lambda &amp;lt; 1 $, the convergence of the high order numerical scheme has the optimal convergence order of $ O(\\Delta_{s}^{4-\\gamma}+\\Delta_{t}^{4-\\lambda }) $. Finally, two numerical examples are used for experimental testing to support the theoretical findings.</p></abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"26 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-order uniform accurate numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations\",\"authors\":\"Ziqiang Wang, Kaihao Shi, Xingyang Ye, Junying Cao\",\"doi\":\"10.3934/math.20231523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>In this paper, we consider a higher-order numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations with uniform accuracy. First, the high-order numerical scheme is constructed by using piecewise biquadratic logarithmic interpolations to approximate an integral function based on the idea of the modified block-by-block method. Secondly, for $ 0 &amp;lt; \\\\gamma, \\\\lambda &amp;lt; 1 $, the convergence of the high order numerical scheme has the optimal convergence order of $ O(\\\\Delta_{s}^{4-\\\\gamma}+\\\\Delta_{t}^{4-\\\\lambda }) $. Finally, two numerical examples are used for experimental testing to support the theoretical findings.</p></abstract>\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231523\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/math.20231523","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了具有一致精度的二维非线性分数阶Hadamard积分方程的一种高阶数值格式。首先,基于改进的分块法思想,采用分段双二次对数插值法逼近积分函数,构造了高阶数值格式;其次,对于$ 0 &lt; \gamma, \lambda &lt; 1 $,高阶数值格式的收敛具有$ O(\Delta_{s}^{4-\gamma}+\Delta_{t}^{4-\lambda }) $的最优收敛阶。最后,用两个数值算例进行了实验验证,以支持理论结论。&lt;/p&gt;&lt;/abstract&gt;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-order uniform accurate numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations

In this paper, we consider a higher-order numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations with uniform accuracy. First, the high-order numerical scheme is constructed by using piecewise biquadratic logarithmic interpolations to approximate an integral function based on the idea of the modified block-by-block method. Secondly, for $ 0 &lt; \gamma, \lambda &lt; 1 $, the convergence of the high order numerical scheme has the optimal convergence order of $ O(\Delta_{s}^{4-\gamma}+\Delta_{t}^{4-\lambda }) $. Finally, two numerical examples are used for experimental testing to support the theoretical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信