Luccas L. Name, Laura C. Lieb, Daniel Y. Tiba, Thiago C. Canevari
{"title":"油胺通过电化学途径获得的掺杂 N 的碳量子点:结构研究以及通过表面增强紫外线吸收(SEUVA)探测铜的概念验证","authors":"Luccas L. Name, Laura C. Lieb, Daniel Y. Tiba, Thiago C. Canevari","doi":"10.1007/s13204-023-02963-7","DOIUrl":null,"url":null,"abstract":"<div><p>This work reports the characterization and application of N-doped carbon quantum dots (CdotN) obtained electrochemically from oleylamine as a copper (II) UV probe. It has been observed that copper salts dissolved in ethanol show a well-defined UV absorption band with an apex at 372 nm. Moreover, CdotN as a complexing agent, promotes emerging surface-enhanced ultraviolet absorbance (SEUVA) events that facilitate copper determination. The characterization of CdotN nanomaterial has been performed by FTIR, UV–Vis, Raman spectroscopy, Atomic force microscopy (AFM), Transmission electron microscopy (TEM), Differential thermal analysis (DTA), and Thermogravimetric analysis (TGA). The detection limit in the standard sample has been assigned as 156 ppb, and the limit of quantification as 312 ppb. The SEUVA technique using CdotN as a probe has been employed to determine copper in real samples present recovery of about 105 and 109%. The copper determination by CdotN did not suffer significantly interfere with other cationic ions or dyes.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 1","pages":"149 - 160"},"PeriodicalIF":3.6740,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-doped carbon quantum dots obtained by oleylamine through electrochemical routes: structural study and a proof of concept in the employ as a probe for detection of copper through surface-enhanced ultraviolet absorbance (SEUVA)\",\"authors\":\"Luccas L. Name, Laura C. Lieb, Daniel Y. Tiba, Thiago C. Canevari\",\"doi\":\"10.1007/s13204-023-02963-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work reports the characterization and application of N-doped carbon quantum dots (CdotN) obtained electrochemically from oleylamine as a copper (II) UV probe. It has been observed that copper salts dissolved in ethanol show a well-defined UV absorption band with an apex at 372 nm. Moreover, CdotN as a complexing agent, promotes emerging surface-enhanced ultraviolet absorbance (SEUVA) events that facilitate copper determination. The characterization of CdotN nanomaterial has been performed by FTIR, UV–Vis, Raman spectroscopy, Atomic force microscopy (AFM), Transmission electron microscopy (TEM), Differential thermal analysis (DTA), and Thermogravimetric analysis (TGA). The detection limit in the standard sample has been assigned as 156 ppb, and the limit of quantification as 312 ppb. The SEUVA technique using CdotN as a probe has been employed to determine copper in real samples present recovery of about 105 and 109%. The copper determination by CdotN did not suffer significantly interfere with other cationic ions or dyes.</p></div>\",\"PeriodicalId\":471,\"journal\":{\"name\":\"Applied Nanoscience\",\"volume\":\"14 1\",\"pages\":\"149 - 160\"},\"PeriodicalIF\":3.6740,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Nanoscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13204-023-02963-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-023-02963-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
N-doped carbon quantum dots obtained by oleylamine through electrochemical routes: structural study and a proof of concept in the employ as a probe for detection of copper through surface-enhanced ultraviolet absorbance (SEUVA)
This work reports the characterization and application of N-doped carbon quantum dots (CdotN) obtained electrochemically from oleylamine as a copper (II) UV probe. It has been observed that copper salts dissolved in ethanol show a well-defined UV absorption band with an apex at 372 nm. Moreover, CdotN as a complexing agent, promotes emerging surface-enhanced ultraviolet absorbance (SEUVA) events that facilitate copper determination. The characterization of CdotN nanomaterial has been performed by FTIR, UV–Vis, Raman spectroscopy, Atomic force microscopy (AFM), Transmission electron microscopy (TEM), Differential thermal analysis (DTA), and Thermogravimetric analysis (TGA). The detection limit in the standard sample has been assigned as 156 ppb, and the limit of quantification as 312 ppb. The SEUVA technique using CdotN as a probe has been employed to determine copper in real samples present recovery of about 105 and 109%. The copper determination by CdotN did not suffer significantly interfere with other cationic ions or dyes.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.