弱几乎平方Banach空间

Pub Date : 2023-10-05 DOI:10.1017/s0013091523000536
José RodrÍguez, Abraham Rueda Zoca
{"title":"弱几乎平方Banach空间","authors":"José RodrÍguez, Abraham Rueda Zoca","doi":"10.1017/s0013091523000536","DOIUrl":null,"url":null,"abstract":"Abstract We prove some results on weakly almost square Banach spaces and their relatives. On the one hand, we discuss weak almost squareness in the setting of Banach function spaces. More precisely, let $(\\Omega,\\Sigma)$ be a measurable space, let E be a Banach lattice and let $\\nu:\\Sigma \\to E^+$ be a non-atomic countably additive measure having relatively norm compact range. Then the space $L_1(\\nu)$ is weakly almost square. This result applies to some abstract Cesàro function spaces. Similar arguments show that the Lebesgue–Bochner space $L_1(\\mu,Y)$ is weakly almost square for any Banach space Y and for any non-atomic finite measure µ . On the other hand, we make some progress on the open question of whether there exists a locally almost square Banach space, which fails the diameter two property. In this line, we prove that if X is any Banach space containing a complemented isomorphic copy of c 0 , then for every $0 \\lt \\varepsilon \\lt 1$ , there exists an equivalent norm $|\\cdot|$ on X satisfying the following: (i) every slice of the unit ball $B_{(X,|\\cdot|)}$ has diameter 2; (ii) $B_{(X,|\\cdot|)}$ contains non-empty relatively weakly open subsets of arbitrarily small diameter and (iii) $(X,|\\cdot|)$ is ( r , s )-SQ for all $0 \\lt r,s \\lt \\frac{1-\\varepsilon}{1+\\varepsilon}$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Weakly Almost Square Banach Spaces\",\"authors\":\"José RodrÍguez, Abraham Rueda Zoca\",\"doi\":\"10.1017/s0013091523000536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove some results on weakly almost square Banach spaces and their relatives. On the one hand, we discuss weak almost squareness in the setting of Banach function spaces. More precisely, let $(\\\\Omega,\\\\Sigma)$ be a measurable space, let E be a Banach lattice and let $\\\\nu:\\\\Sigma \\\\to E^+$ be a non-atomic countably additive measure having relatively norm compact range. Then the space $L_1(\\\\nu)$ is weakly almost square. This result applies to some abstract Cesàro function spaces. Similar arguments show that the Lebesgue–Bochner space $L_1(\\\\mu,Y)$ is weakly almost square for any Banach space Y and for any non-atomic finite measure µ . On the other hand, we make some progress on the open question of whether there exists a locally almost square Banach space, which fails the diameter two property. In this line, we prove that if X is any Banach space containing a complemented isomorphic copy of c 0 , then for every $0 \\\\lt \\\\varepsilon \\\\lt 1$ , there exists an equivalent norm $|\\\\cdot|$ on X satisfying the following: (i) every slice of the unit ball $B_{(X,|\\\\cdot|)}$ has diameter 2; (ii) $B_{(X,|\\\\cdot|)}$ contains non-empty relatively weakly open subsets of arbitrarily small diameter and (iii) $(X,|\\\\cdot|)$ is ( r , s )-SQ for all $0 \\\\lt r,s \\\\lt \\\\frac{1-\\\\varepsilon}{1+\\\\varepsilon}$ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0013091523000536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0013091523000536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要证明了弱概平方Banach空间及其相关空间上的一些结果。一方面,我们讨论了Banach函数空间的弱概正性。更确切地说,设$(\Omega,\Sigma)$是一个可测空间,设E是一个巴拿赫格,设$\nu:\Sigma \to E^+$是一个具有相对范数紧域的非原子可数加性测度。那么空间$L_1(\nu)$是弱接近方形的。这个结果适用于一些抽象的Cesàro函数空间。类似的论证表明Lebesgue-Bochner空间$L_1(\mu,Y)$对于任何Banach空间Y和任何非原子有限测度µ都是弱几乎平方的。另一方面,我们对是否存在不满足直径2性质的局部概方Banach空间的开放性问题取得了一些进展。在本行中,我们证明了如果X是任何包含c0的互补同构副本的Banach空间,那么对于每$0 \lt \varepsilon \lt 1$, X上存在一个等价范数$|\cdot|$满足下列条件:(i)单位球$B_{(X,|\cdot|)}$的每片的直径为2;(ii) $B_{(X,|\cdot|)}$包含任意小直径的非空相对弱开子集,(iii) $(X,|\cdot|)$对于所有$0 \lt r,s \lt \frac{1-\varepsilon}{1+\varepsilon}$都是(r, s)-SQ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Weakly Almost Square Banach Spaces
Abstract We prove some results on weakly almost square Banach spaces and their relatives. On the one hand, we discuss weak almost squareness in the setting of Banach function spaces. More precisely, let $(\Omega,\Sigma)$ be a measurable space, let E be a Banach lattice and let $\nu:\Sigma \to E^+$ be a non-atomic countably additive measure having relatively norm compact range. Then the space $L_1(\nu)$ is weakly almost square. This result applies to some abstract Cesàro function spaces. Similar arguments show that the Lebesgue–Bochner space $L_1(\mu,Y)$ is weakly almost square for any Banach space Y and for any non-atomic finite measure µ . On the other hand, we make some progress on the open question of whether there exists a locally almost square Banach space, which fails the diameter two property. In this line, we prove that if X is any Banach space containing a complemented isomorphic copy of c 0 , then for every $0 \lt \varepsilon \lt 1$ , there exists an equivalent norm $|\cdot|$ on X satisfying the following: (i) every slice of the unit ball $B_{(X,|\cdot|)}$ has diameter 2; (ii) $B_{(X,|\cdot|)}$ contains non-empty relatively weakly open subsets of arbitrarily small diameter and (iii) $(X,|\cdot|)$ is ( r , s )-SQ for all $0 \lt r,s \lt \frac{1-\varepsilon}{1+\varepsilon}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信