FJSP的深度学习神经网络算法和遗传算法研究

IF 1.2 Q2 MATHEMATICS, APPLIED
Xiaofeng Shang
{"title":"FJSP的深度学习神经网络算法和遗传算法研究","authors":"Xiaofeng Shang","doi":"10.1155/2023/4573352","DOIUrl":null,"url":null,"abstract":"Flexible job-shop scheduling problem (FJSP) is a new research hotspot in the field of production scheduling. To solve the multiobjective FJSP problem, the production of flexible job shop can run normally and quickly. This research takes into account various characteristics of FJSP problems, such as the need to ensure the continuity and stability of processing, the existence of multiple objectives in the whole process, and the constant complexity of changes. It starts with deep learning neural networks and genetic algorithms. Long short-term memory (LSTM) and convolutional neural networks (CNN) are combined in deep learning neural networks. The new improved algorithm is based on the combination of deep learning neural networks LSTM and CNN with genetic algorithm (GA), namely, CNN-LSTM-GA algorithm. Simulation results showed that the accuracy of the CNN-LSTM-GA algorithm was between 85.2% and 95.3% in the test set. In the verification set, the minimum accuracy of the CNN-LSTM-GA algorithm was 84.6%, both of which were higher than the maximum accuracy of the other two algorithms. In the FJSP simulation experiment, the AUC value of the CNN-LSTM-GA algorithm was 0.92. After 40 iterations, the F1 value of the CNN-LSTM-GA algorithm remained above 0.8, which was significantly higher than the other two algorithms. CNN-LSTM-GA is superior to the other two algorithms in terms of prediction accuracy and overall performance of FJSP. It is more suitable for solving the discrete manufacturing job scheduling problem with FJSP characteristics. This study significantly raises the utilisation rate of the assembly shop’s equipment, optimises the scheduling of FJSP, and fully utilises each processing device’s versatile characteristics, which are quite useful for the production processes of domestic vehicle manufacturing companies.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":"10 2","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Deep Learning Neural Network Algorithms and Genetic Algorithms for FJSP\",\"authors\":\"Xiaofeng Shang\",\"doi\":\"10.1155/2023/4573352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible job-shop scheduling problem (FJSP) is a new research hotspot in the field of production scheduling. To solve the multiobjective FJSP problem, the production of flexible job shop can run normally and quickly. This research takes into account various characteristics of FJSP problems, such as the need to ensure the continuity and stability of processing, the existence of multiple objectives in the whole process, and the constant complexity of changes. It starts with deep learning neural networks and genetic algorithms. Long short-term memory (LSTM) and convolutional neural networks (CNN) are combined in deep learning neural networks. The new improved algorithm is based on the combination of deep learning neural networks LSTM and CNN with genetic algorithm (GA), namely, CNN-LSTM-GA algorithm. Simulation results showed that the accuracy of the CNN-LSTM-GA algorithm was between 85.2% and 95.3% in the test set. In the verification set, the minimum accuracy of the CNN-LSTM-GA algorithm was 84.6%, both of which were higher than the maximum accuracy of the other two algorithms. In the FJSP simulation experiment, the AUC value of the CNN-LSTM-GA algorithm was 0.92. After 40 iterations, the F1 value of the CNN-LSTM-GA algorithm remained above 0.8, which was significantly higher than the other two algorithms. CNN-LSTM-GA is superior to the other two algorithms in terms of prediction accuracy and overall performance of FJSP. It is more suitable for solving the discrete manufacturing job scheduling problem with FJSP characteristics. This study significantly raises the utilisation rate of the assembly shop’s equipment, optimises the scheduling of FJSP, and fully utilises each processing device’s versatile characteristics, which are quite useful for the production processes of domestic vehicle manufacturing companies.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":\"10 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4573352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4573352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

柔性作业车间调度问题(FJSP)是生产调度领域的一个新的研究热点。解决多目标FJSP问题,使柔性作业车间的生产能够正常、快速地运行。本研究考虑到FJSP问题的各种特点,如需要保证加工的连续性和稳定性、整个过程中存在多个目标、变化的不断复杂性等。它从深度学习神经网络和遗传算法开始。将长短期记忆(LSTM)和卷积神经网络(CNN)结合在深度学习神经网络中。新的改进算法是基于深度学习神经网络LSTM和CNN与遗传算法(GA)的结合,即CNN-LSTM-GA算法。仿真结果表明,CNN-LSTM-GA算法在测试集中的准确率在85.2% ~ 95.3%之间。在验证集中,CNN-LSTM-GA算法的最小准确率为84.6%,均高于其他两种算法的最大准确率。在FJSP仿真实验中,CNN-LSTM-GA算法的AUC值为0.92。经过40次迭代,CNN-LSTM-GA算法的F1值保持在0.8以上,明显高于其他两种算法。CNN-LSTM-GA在FJSP的预测精度和整体性能上都优于其他两种算法。它更适合于求解具有FJSP特性的离散制造作业调度问题。本研究显著提高了装配车间设备的利用率,优化了FJSP的调度,充分利用了各加工设备的通用性特点,对国内整车制造企业的生产工艺具有一定的借鉴意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Deep Learning Neural Network Algorithms and Genetic Algorithms for FJSP
Flexible job-shop scheduling problem (FJSP) is a new research hotspot in the field of production scheduling. To solve the multiobjective FJSP problem, the production of flexible job shop can run normally and quickly. This research takes into account various characteristics of FJSP problems, such as the need to ensure the continuity and stability of processing, the existence of multiple objectives in the whole process, and the constant complexity of changes. It starts with deep learning neural networks and genetic algorithms. Long short-term memory (LSTM) and convolutional neural networks (CNN) are combined in deep learning neural networks. The new improved algorithm is based on the combination of deep learning neural networks LSTM and CNN with genetic algorithm (GA), namely, CNN-LSTM-GA algorithm. Simulation results showed that the accuracy of the CNN-LSTM-GA algorithm was between 85.2% and 95.3% in the test set. In the verification set, the minimum accuracy of the CNN-LSTM-GA algorithm was 84.6%, both of which were higher than the maximum accuracy of the other two algorithms. In the FJSP simulation experiment, the AUC value of the CNN-LSTM-GA algorithm was 0.92. After 40 iterations, the F1 value of the CNN-LSTM-GA algorithm remained above 0.8, which was significantly higher than the other two algorithms. CNN-LSTM-GA is superior to the other two algorithms in terms of prediction accuracy and overall performance of FJSP. It is more suitable for solving the discrete manufacturing job scheduling problem with FJSP characteristics. This study significantly raises the utilisation rate of the assembly shop’s equipment, optimises the scheduling of FJSP, and fully utilises each processing device’s versatile characteristics, which are quite useful for the production processes of domestic vehicle manufacturing companies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信