曲面上复向量场的实中心奇点

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
V. León, B. Scárdua
{"title":"曲面上复向量场的实中心奇点","authors":"V. León, B. Scárdua","doi":"10.1080/14689367.2023.2270931","DOIUrl":null,"url":null,"abstract":"AbstractOne of the various versions of the classical Lyapunov-Poincaré center theorem states that a nondegenerate real analytic center type planar vector field singularity admits an analytic first integral. In a more proof of this result, R. Moussu establishes important connection between this result and the theory of singularities of holomorphic foliations [R. Moussu, Une démonstration géométrique d'un théorème de Lyapunov-Poincaré, Astérisque 98–99 (1982), pp. 216–223]. In this paper we consider generalizations for two main frameworks: (i) planar real analytic vector fields with ‘many’ periodic orbits near the singularity and (ii) germs of holomorphic foliations having a suitable singularity in dimension two. In this paper we prove versions of Poincaré-Lyapunov center theorem, including for the case of holomorphic vector fields. We also give some applications, hinting that there is much more to be explored in this framework.Keywords: Foliationcenter singularityfirst integralintegrable form AcknowledgmentThe first author is grateful to Edital n°77/2022/PRPPG-PAAP-UNILA for partially supporting this research work.Disclosure statementNo potential conflict of interest was reported by the author(s).","PeriodicalId":50564,"journal":{"name":"Dynamical Systems-An International Journal","volume":"147 12","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On real center singularities of complex vector fields on surfaces\",\"authors\":\"V. León, B. Scárdua\",\"doi\":\"10.1080/14689367.2023.2270931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractOne of the various versions of the classical Lyapunov-Poincaré center theorem states that a nondegenerate real analytic center type planar vector field singularity admits an analytic first integral. In a more proof of this result, R. Moussu establishes important connection between this result and the theory of singularities of holomorphic foliations [R. Moussu, Une démonstration géométrique d'un théorème de Lyapunov-Poincaré, Astérisque 98–99 (1982), pp. 216–223]. In this paper we consider generalizations for two main frameworks: (i) planar real analytic vector fields with ‘many’ periodic orbits near the singularity and (ii) germs of holomorphic foliations having a suitable singularity in dimension two. In this paper we prove versions of Poincaré-Lyapunov center theorem, including for the case of holomorphic vector fields. We also give some applications, hinting that there is much more to be explored in this framework.Keywords: Foliationcenter singularityfirst integralintegrable form AcknowledgmentThe first author is grateful to Edital n°77/2022/PRPPG-PAAP-UNILA for partially supporting this research work.Disclosure statementNo potential conflict of interest was reported by the author(s).\",\"PeriodicalId\":50564,\"journal\":{\"name\":\"Dynamical Systems-An International Journal\",\"volume\":\"147 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamical Systems-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/14689367.2023.2270931\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamical Systems-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2270931","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

【摘要】经典李亚普诺夫-庞加莱中心定理的一个版本指出,一个非简并实解析中心型平面向量场奇点允许一个解析第一积分。在对这一结果的进一步证明中,R. Moussu在这一结果与全纯叶的奇点理论之间建立了重要的联系。穆苏,李亚普诺夫-波因卡罗,《 通讯通讯与通讯通讯》,《通讯通讯与通讯通讯》(1982),第216-223页。本文考虑了两个主要框架的推广:(i)在奇点附近具有“许多”周期轨道的平面实解析向量场和(ii)在二维空间中具有合适奇点的全纯叶理的胚芽。本文证明了庞加莱-李亚普诺夫中心定理的几个版本,包括全纯向量场的证明。我们还给出了一些应用程序,暗示在这个框架中还有更多的东西需要探索。第一作者感谢Edital n°77/2022/PRPPG-PAAP-UNILA对本研究工作的部分支持。披露声明作者未报告潜在的利益冲突。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On real center singularities of complex vector fields on surfaces
AbstractOne of the various versions of the classical Lyapunov-Poincaré center theorem states that a nondegenerate real analytic center type planar vector field singularity admits an analytic first integral. In a more proof of this result, R. Moussu establishes important connection between this result and the theory of singularities of holomorphic foliations [R. Moussu, Une démonstration géométrique d'un théorème de Lyapunov-Poincaré, Astérisque 98–99 (1982), pp. 216–223]. In this paper we consider generalizations for two main frameworks: (i) planar real analytic vector fields with ‘many’ periodic orbits near the singularity and (ii) germs of holomorphic foliations having a suitable singularity in dimension two. In this paper we prove versions of Poincaré-Lyapunov center theorem, including for the case of holomorphic vector fields. We also give some applications, hinting that there is much more to be explored in this framework.Keywords: Foliationcenter singularityfirst integralintegrable form AcknowledgmentThe first author is grateful to Edital n°77/2022/PRPPG-PAAP-UNILA for partially supporting this research work.Disclosure statementNo potential conflict of interest was reported by the author(s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: Dynamical Systems: An International Journal is a world-leading journal acting as a forum for communication across all branches of modern dynamical systems, and especially as a platform to facilitate interaction between theory and applications. This journal publishes high quality research articles in the theory and applications of dynamical systems, especially (but not exclusively) nonlinear systems. Advances in the following topics are addressed by the journal: •Differential equations •Bifurcation theory •Hamiltonian and Lagrangian dynamics •Hyperbolic dynamics •Ergodic theory •Topological and smooth dynamics •Random dynamical systems •Applications in technology, engineering and natural and life sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信