一种用于PEMFC氢气再循环系统的部分嵌套式大工作范围喷射器

IF 2.1 Q2 ENGINEERING, MULTIDISCIPLINARY
Anning Yi, Chen Wang, Lei Wang, Xinli Wang
{"title":"一种用于PEMFC氢气再循环系统的部分嵌套式大工作范围喷射器","authors":"Anning Yi, Chen Wang, Lei Wang, Xinli Wang","doi":"10.3390/inventions8060133","DOIUrl":null,"url":null,"abstract":"The ejector drives unreacted hydrogen from the anode to improve fuel utilization ratio and discharges redundant water to prevent flooding and shutdown in the proton exchange membrane fuel cell (PEMFC). However, the traditional fixed structure ejector cannot meet the recycling requirements in the whole dynamic working condition of the fuel cell. In this article, a part nested four-nozzle (PNFN) ejector is proposed to enhance the hydrogen recycling efficiency under variable working conditions of the PEMFC by restricting the nozzle flow as 10%, 20%, 20%, and 50% of the fuel cell-rated power, respectively. Systematical analyses are performed on the experimentally verified 3D model to study inner flow characteristics and performance under different nozzle running modes. The results indicate that the PNFN ejector satisfies the recirculation ratio requirements in the power range of 34–220 kW within the 7–9 bar suitable supply pressure. By comparing with traditional ejectors, the PNFN ejector has a wider working range and especially outputs better performance in the low power range.","PeriodicalId":14564,"journal":{"name":"Inventions","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Wide Operating Range Ejector with Part Nested Nozzles for PEMFC Hydrogen Recirculation System\",\"authors\":\"Anning Yi, Chen Wang, Lei Wang, Xinli Wang\",\"doi\":\"10.3390/inventions8060133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ejector drives unreacted hydrogen from the anode to improve fuel utilization ratio and discharges redundant water to prevent flooding and shutdown in the proton exchange membrane fuel cell (PEMFC). However, the traditional fixed structure ejector cannot meet the recycling requirements in the whole dynamic working condition of the fuel cell. In this article, a part nested four-nozzle (PNFN) ejector is proposed to enhance the hydrogen recycling efficiency under variable working conditions of the PEMFC by restricting the nozzle flow as 10%, 20%, 20%, and 50% of the fuel cell-rated power, respectively. Systematical analyses are performed on the experimentally verified 3D model to study inner flow characteristics and performance under different nozzle running modes. The results indicate that the PNFN ejector satisfies the recirculation ratio requirements in the power range of 34–220 kW within the 7–9 bar suitable supply pressure. By comparing with traditional ejectors, the PNFN ejector has a wider working range and especially outputs better performance in the low power range.\",\"PeriodicalId\":14564,\"journal\":{\"name\":\"Inventions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inventions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/inventions8060133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/inventions8060133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

喷射器驱动阳极中未反应的氢,以提高燃料利用率,并排出多余的水,防止质子交换膜燃料电池(PEMFC)的淹水和停机。然而,传统的固定结构喷射器不能满足燃料电池在整个动态工作状态下的回收要求。本文提出了一种局部嵌套式四喷嘴(PNFN)喷射器,通过将喷嘴流量分别限制为燃料电池额定功率的10%、20%、20%和50%,来提高PEMFC在可变工况下的氢气回收效率。对实验验证的三维模型进行了系统的分析,研究了不同喷嘴运行模式下的内部流动特性和性能。结果表明,在7 ~ 9 bar的合适供电压力下,PNFN喷射器满足34 ~ 220 kW功率范围内的再循环比要求。与传统的喷射器相比,PNFN喷射器具有更宽的工作范围,特别是在低功率范围内输出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Wide Operating Range Ejector with Part Nested Nozzles for PEMFC Hydrogen Recirculation System
The ejector drives unreacted hydrogen from the anode to improve fuel utilization ratio and discharges redundant water to prevent flooding and shutdown in the proton exchange membrane fuel cell (PEMFC). However, the traditional fixed structure ejector cannot meet the recycling requirements in the whole dynamic working condition of the fuel cell. In this article, a part nested four-nozzle (PNFN) ejector is proposed to enhance the hydrogen recycling efficiency under variable working conditions of the PEMFC by restricting the nozzle flow as 10%, 20%, 20%, and 50% of the fuel cell-rated power, respectively. Systematical analyses are performed on the experimentally verified 3D model to study inner flow characteristics and performance under different nozzle running modes. The results indicate that the PNFN ejector satisfies the recirculation ratio requirements in the power range of 34–220 kW within the 7–9 bar suitable supply pressure. By comparing with traditional ejectors, the PNFN ejector has a wider working range and especially outputs better performance in the low power range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inventions
Inventions Engineering-Engineering (all)
CiteScore
4.80
自引率
11.80%
发文量
91
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信