群代数中有向对合下对称单位上的群恒等式

IF 1.1 4区 数学 Q1 MATHEMATICS
Alexander Holguín-Villa, John H. Castillo
{"title":"群代数中有向对合下对称单位上的群恒等式","authors":"Alexander Holguín-Villa, John H. Castillo","doi":"10.1007/s11587-023-00809-6","DOIUrl":null,"url":null,"abstract":"Abstract Let $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> denote the group algebra of a locally finite group G over the infinite field $$\\mathbb {F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> with $$\\mathop {\\textrm{char}}\\nolimits (\\mathbb {F})\\ne 2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>char</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≠</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , and let $$\\circledast :\\mathbb {F}G\\rightarrow \\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>⊛</mml:mo> <mml:mo>:</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>→</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> denote the involution defined by $$\\alpha =\\Sigma \\alpha _{g}g \\mapsto \\alpha ^\\circledast =\\Sigma \\alpha _{g}\\sigma (g)g^{*}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Σ</mml:mi> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mi>g</mml:mi> <mml:mo>↦</mml:mo> <mml:msup> <mml:mi>α</mml:mi> <mml:mo>⊛</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>Σ</mml:mi> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mi>σ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>g</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>g</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , where $$\\sigma :G\\rightarrow \\{\\pm 1\\}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mo>→</mml:mo> <mml:mo>{</mml:mo> <mml:mo>±</mml:mo> <mml:mn>1</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> is a group homomorphism (called an orientation) and $$*$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:math> is an involution of the group G . In this paper we prove, under some assumptions, that if the $$\\circledast $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>⊛</mml:mo> </mml:math> -symmetric units of $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> satisfies a group identity then $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> satisfies a polynomial identity, i.e., we give an affirmative answer to a Conjecture of B. Hartley in this setting. Moreover, in the case when the prime radical $$\\eta (\\mathbb {F}G)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> is nilpotent we characterize the groups for which the symmetric units $$\\mathcal {U}^+(\\mathbb {F}G)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>U</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> do satisfy a group identity.","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"40 9","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group identities on symmetric units under oriented involutions in group algebras\",\"authors\":\"Alexander Holguín-Villa, John H. Castillo\",\"doi\":\"10.1007/s11587-023-00809-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $$\\\\mathbb {F}G$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> denote the group algebra of a locally finite group G over the infinite field $$\\\\mathbb {F}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>F</mml:mi> </mml:math> with $$\\\\mathop {\\\\textrm{char}}\\\\nolimits (\\\\mathbb {F})\\\\ne 2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtext>char</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≠</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , and let $$\\\\circledast :\\\\mathbb {F}G\\\\rightarrow \\\\mathbb {F}G$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>⊛</mml:mo> <mml:mo>:</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>→</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> denote the involution defined by $$\\\\alpha =\\\\Sigma \\\\alpha _{g}g \\\\mapsto \\\\alpha ^\\\\circledast =\\\\Sigma \\\\alpha _{g}\\\\sigma (g)g^{*}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Σ</mml:mi> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mi>g</mml:mi> <mml:mo>↦</mml:mo> <mml:msup> <mml:mi>α</mml:mi> <mml:mo>⊛</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>Σ</mml:mi> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mi>σ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>g</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>g</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , where $$\\\\sigma :G\\\\rightarrow \\\\{\\\\pm 1\\\\}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mo>→</mml:mo> <mml:mo>{</mml:mo> <mml:mo>±</mml:mo> <mml:mn>1</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> is a group homomorphism (called an orientation) and $$*$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:math> is an involution of the group G . In this paper we prove, under some assumptions, that if the $$\\\\circledast $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>⊛</mml:mo> </mml:math> -symmetric units of $$\\\\mathbb {F}G$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> satisfies a group identity then $$\\\\mathbb {F}G$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> satisfies a polynomial identity, i.e., we give an affirmative answer to a Conjecture of B. Hartley in this setting. Moreover, in the case when the prime radical $$\\\\eta (\\\\mathbb {F}G)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of $$\\\\mathbb {F}G$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> is nilpotent we characterize the groups for which the symmetric units $$\\\\mathcal {U}^+(\\\\mathbb {F}G)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>U</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> do satisfy a group identity.\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"40 9\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00809-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11587-023-00809-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

抽象Let $$\mathbb {F}G$$ fg表示无限域上的局部有限群G的群代数 $$\mathbb {F}$$ F with $$\mathop {\textrm{char}}\nolimits (\mathbb {F})\ne 2$$ char (F)≠2,让 $$\circledast :\mathbb {F}G\rightarrow \mathbb {F}G$$ : F G→F G表示由 $$\alpha =\Sigma \alpha _{g}g \mapsto \alpha ^\circledast =\Sigma \alpha _{g}\sigma (g)g^{*}$$ α = Σ α g g∑α _ (l) = Σ α g Σ (g) g∗,其中 $$\sigma :G\rightarrow \{\pm 1\}$$ σ: g→ { ±1 } 群同态(称为取向)和 $$*$$ *是G群的对合。在某些假设下,我们证明了 $$\circledast $$ 的对称单位 $$\mathbb {F}G$$ F G满足群恒等式 $$\mathbb {F}G$$ F G满足一个多项式恒等式,即在这种情况下,我们对B. Hartley的一个猜想给出一个肯定的答案。而且,当质根 $$\eta (\mathbb {F}G)$$ 的η (F G) $$\mathbb {F}G$$ 如果G是幂零的,我们描述了对称单位所对应的群 $$\mathcal {U}^+(\mathbb {F}G)$$ U + (F G)满足群恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group identities on symmetric units under oriented involutions in group algebras
Abstract Let $$\mathbb {F}G$$ F G denote the group algebra of a locally finite group G over the infinite field $$\mathbb {F}$$ F with $$\mathop {\textrm{char}}\nolimits (\mathbb {F})\ne 2$$ char ( F ) 2 , and let $$\circledast :\mathbb {F}G\rightarrow \mathbb {F}G$$ : F G F G denote the involution defined by $$\alpha =\Sigma \alpha _{g}g \mapsto \alpha ^\circledast =\Sigma \alpha _{g}\sigma (g)g^{*}$$ α = Σ α g g α = Σ α g σ ( g ) g , where $$\sigma :G\rightarrow \{\pm 1\}$$ σ : G { ± 1 } is a group homomorphism (called an orientation) and $$*$$ is an involution of the group G . In this paper we prove, under some assumptions, that if the $$\circledast $$ -symmetric units of $$\mathbb {F}G$$ F G satisfies a group identity then $$\mathbb {F}G$$ F G satisfies a polynomial identity, i.e., we give an affirmative answer to a Conjecture of B. Hartley in this setting. Moreover, in the case when the prime radical $$\eta (\mathbb {F}G)$$ η ( F G ) of $$\mathbb {F}G$$ F G is nilpotent we characterize the groups for which the symmetric units $$\mathcal {U}^+(\mathbb {F}G)$$ U + ( F G ) do satisfy a group identity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信