{"title":"群代数中有向对合下对称单位上的群恒等式","authors":"Alexander Holguín-Villa, John H. Castillo","doi":"10.1007/s11587-023-00809-6","DOIUrl":null,"url":null,"abstract":"Abstract Let $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> denote the group algebra of a locally finite group G over the infinite field $$\\mathbb {F}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>F</mml:mi> </mml:math> with $$\\mathop {\\textrm{char}}\\nolimits (\\mathbb {F})\\ne 2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtext>char</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≠</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , and let $$\\circledast :\\mathbb {F}G\\rightarrow \\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mo>⊛</mml:mo> <mml:mo>:</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>→</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> denote the involution defined by $$\\alpha =\\Sigma \\alpha _{g}g \\mapsto \\alpha ^\\circledast =\\Sigma \\alpha _{g}\\sigma (g)g^{*}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Σ</mml:mi> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mi>g</mml:mi> <mml:mo>↦</mml:mo> <mml:msup> <mml:mi>α</mml:mi> <mml:mo>⊛</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>Σ</mml:mi> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mi>σ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>g</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>g</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , where $$\\sigma :G\\rightarrow \\{\\pm 1\\}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mo>→</mml:mo> <mml:mo>{</mml:mo> <mml:mo>±</mml:mo> <mml:mn>1</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> is a group homomorphism (called an orientation) and $$*$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:math> is an involution of the group G . In this paper we prove, under some assumptions, that if the $$\\circledast $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mo>⊛</mml:mo> </mml:math> -symmetric units of $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> satisfies a group identity then $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> satisfies a polynomial identity, i.e., we give an affirmative answer to a Conjecture of B. Hartley in this setting. Moreover, in the case when the prime radical $$\\eta (\\mathbb {F}G)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of $$\\mathbb {F}G$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> is nilpotent we characterize the groups for which the symmetric units $$\\mathcal {U}^+(\\mathbb {F}G)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>U</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> do satisfy a group identity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group identities on symmetric units under oriented involutions in group algebras\",\"authors\":\"Alexander Holguín-Villa, John H. Castillo\",\"doi\":\"10.1007/s11587-023-00809-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $$\\\\mathbb {F}G$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> denote the group algebra of a locally finite group G over the infinite field $$\\\\mathbb {F}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>F</mml:mi> </mml:math> with $$\\\\mathop {\\\\textrm{char}}\\\\nolimits (\\\\mathbb {F})\\\\ne 2$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtext>char</mml:mtext> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mo>)</mml:mo> <mml:mo>≠</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> , and let $$\\\\circledast :\\\\mathbb {F}G\\\\rightarrow \\\\mathbb {F}G$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mo>⊛</mml:mo> <mml:mo>:</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>→</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> denote the involution defined by $$\\\\alpha =\\\\Sigma \\\\alpha _{g}g \\\\mapsto \\\\alpha ^\\\\circledast =\\\\Sigma \\\\alpha _{g}\\\\sigma (g)g^{*}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>Σ</mml:mi> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mi>g</mml:mi> <mml:mo>↦</mml:mo> <mml:msup> <mml:mi>α</mml:mi> <mml:mo>⊛</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mi>Σ</mml:mi> <mml:msub> <mml:mi>α</mml:mi> <mml:mi>g</mml:mi> </mml:msub> <mml:mi>σ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>g</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:msup> <mml:mi>g</mml:mi> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , where $$\\\\sigma :G\\\\rightarrow \\\\{\\\\pm 1\\\\}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>σ</mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mo>→</mml:mo> <mml:mo>{</mml:mo> <mml:mo>±</mml:mo> <mml:mn>1</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> is a group homomorphism (called an orientation) and $$*$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow /> <mml:mo>∗</mml:mo> </mml:mrow> </mml:math> is an involution of the group G . In this paper we prove, under some assumptions, that if the $$\\\\circledast $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mo>⊛</mml:mo> </mml:math> -symmetric units of $$\\\\mathbb {F}G$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> satisfies a group identity then $$\\\\mathbb {F}G$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> satisfies a polynomial identity, i.e., we give an affirmative answer to a Conjecture of B. Hartley in this setting. Moreover, in the case when the prime radical $$\\\\eta (\\\\mathbb {F}G)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>η</mml:mi> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> of $$\\\\mathbb {F}G$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> </mml:mrow> </mml:math> is nilpotent we characterize the groups for which the symmetric units $$\\\\mathcal {U}^+(\\\\mathbb {F}G)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>U</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>F</mml:mi> <mml:mi>G</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> do satisfy a group identity.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00809-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11587-023-00809-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Group identities on symmetric units under oriented involutions in group algebras
Abstract Let $$\mathbb {F}G$$ FG denote the group algebra of a locally finite group G over the infinite field $$\mathbb {F}$$ F with $$\mathop {\textrm{char}}\nolimits (\mathbb {F})\ne 2$$ char(F)≠2 , and let $$\circledast :\mathbb {F}G\rightarrow \mathbb {F}G$$ ⊛:FG→FG denote the involution defined by $$\alpha =\Sigma \alpha _{g}g \mapsto \alpha ^\circledast =\Sigma \alpha _{g}\sigma (g)g^{*}$$ α=Σαgg↦α⊛=Σαgσ(g)g∗ , where $$\sigma :G\rightarrow \{\pm 1\}$$ σ:G→{±1} is a group homomorphism (called an orientation) and $$*$$ ∗ is an involution of the group G . In this paper we prove, under some assumptions, that if the $$\circledast $$ ⊛ -symmetric units of $$\mathbb {F}G$$ FG satisfies a group identity then $$\mathbb {F}G$$ FG satisfies a polynomial identity, i.e., we give an affirmative answer to a Conjecture of B. Hartley in this setting. Moreover, in the case when the prime radical $$\eta (\mathbb {F}G)$$ η(FG) of $$\mathbb {F}G$$ FG is nilpotent we characterize the groups for which the symmetric units $$\mathcal {U}^+(\mathbb {F}G)$$ U+(FG) do satisfy a group identity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.