{"title":"增强气敏性能的NiO/TiO 2二元纳米复合材料的合成","authors":"Bhargavi KS, Anindita Bose, Naveen CS","doi":"10.24018/ejphysics.2023.5.5.261","DOIUrl":null,"url":null,"abstract":"The rapid development of electronic devices used in detecting noxious gases has made gas sensors more and more important. The semiconducting metal oxides’ ability to detect gases is a result of their reactions with the gases in the environment, which change the semiconductor’s resistance. In this study, a composite metal oxide material made of NiO and TiO2 with different doping concentrations of (1, 3, 5, 7) is synthesized using the sol-gel process. A binary compound with excellent crystallization is obtained post 500° calcination. SEM, XRD and FTIR were used to evaluate the morphological fluctuations and the phase identification of NiO/TiO2 nano composite. The butane gas is found to respond well in the concentration ranges of 500 to 3000 ppm, respectively, at temperatures 373 to 573 K as well as at ambient temperature.","PeriodicalId":470553,"journal":{"name":"European journal of applied physic","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of NiO/TiO₂ Binary Nano Composite for the Enhancement of Gas Sensing Properties\",\"authors\":\"Bhargavi KS, Anindita Bose, Naveen CS\",\"doi\":\"10.24018/ejphysics.2023.5.5.261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of electronic devices used in detecting noxious gases has made gas sensors more and more important. The semiconducting metal oxides’ ability to detect gases is a result of their reactions with the gases in the environment, which change the semiconductor’s resistance. In this study, a composite metal oxide material made of NiO and TiO2 with different doping concentrations of (1, 3, 5, 7) is synthesized using the sol-gel process. A binary compound with excellent crystallization is obtained post 500° calcination. SEM, XRD and FTIR were used to evaluate the morphological fluctuations and the phase identification of NiO/TiO2 nano composite. The butane gas is found to respond well in the concentration ranges of 500 to 3000 ppm, respectively, at temperatures 373 to 573 K as well as at ambient temperature.\",\"PeriodicalId\":470553,\"journal\":{\"name\":\"European journal of applied physic\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of applied physic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24018/ejphysics.2023.5.5.261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of applied physic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejphysics.2023.5.5.261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of NiO/TiO₂ Binary Nano Composite for the Enhancement of Gas Sensing Properties
The rapid development of electronic devices used in detecting noxious gases has made gas sensors more and more important. The semiconducting metal oxides’ ability to detect gases is a result of their reactions with the gases in the environment, which change the semiconductor’s resistance. In this study, a composite metal oxide material made of NiO and TiO2 with different doping concentrations of (1, 3, 5, 7) is synthesized using the sol-gel process. A binary compound with excellent crystallization is obtained post 500° calcination. SEM, XRD and FTIR were used to evaluate the morphological fluctuations and the phase identification of NiO/TiO2 nano composite. The butane gas is found to respond well in the concentration ranges of 500 to 3000 ppm, respectively, at temperatures 373 to 573 K as well as at ambient temperature.