Long Yang, Ming Chen, Taizheng Wu, Liang Niu, Liang Zeng, Guang Feng
{"title":"电化学储能装置用低温电解质:体积和界面特性","authors":"Long Yang, Ming Chen, Taizheng Wu, Liang Niu, Liang Zeng, Guang Feng","doi":"10.1088/2058-8585/acf943","DOIUrl":null,"url":null,"abstract":"Abstract The optimization of electrochemical energy storage devices (EES) for low-temperature conditions is crucial in light of the growing demand for convenient living in such environments. Sluggish ion transport or the freezing of electrolytes at the electrode-electrolyte interface are the primary factors that limit the performance of EES under low temperatures, leading to fading of capacity and instability in device performance. This review provides a comprehensive overview of antifreeze strategies for various electrolytes (including aqueous electrolytes, organic electrolytes, and ionic liquids), and optimization methods for ion transport at the electrolyte-electrode. Additionally, the main challenges and forward-looking views are highlighted on the design and development of low-temperature electrolytes and EES devices.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":"2012 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-temperature electrolytes for electrochemical energy storage devices: bulk and interfacial properties\",\"authors\":\"Long Yang, Ming Chen, Taizheng Wu, Liang Niu, Liang Zeng, Guang Feng\",\"doi\":\"10.1088/2058-8585/acf943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The optimization of electrochemical energy storage devices (EES) for low-temperature conditions is crucial in light of the growing demand for convenient living in such environments. Sluggish ion transport or the freezing of electrolytes at the electrode-electrolyte interface are the primary factors that limit the performance of EES under low temperatures, leading to fading of capacity and instability in device performance. This review provides a comprehensive overview of antifreeze strategies for various electrolytes (including aqueous electrolytes, organic electrolytes, and ionic liquids), and optimization methods for ion transport at the electrolyte-electrode. Additionally, the main challenges and forward-looking views are highlighted on the design and development of low-temperature electrolytes and EES devices.\",\"PeriodicalId\":51335,\"journal\":{\"name\":\"Flexible and Printed Electronics\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flexible and Printed Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-8585/acf943\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flexible and Printed Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-8585/acf943","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Low-temperature electrolytes for electrochemical energy storage devices: bulk and interfacial properties
Abstract The optimization of electrochemical energy storage devices (EES) for low-temperature conditions is crucial in light of the growing demand for convenient living in such environments. Sluggish ion transport or the freezing of electrolytes at the electrode-electrolyte interface are the primary factors that limit the performance of EES under low temperatures, leading to fading of capacity and instability in device performance. This review provides a comprehensive overview of antifreeze strategies for various electrolytes (including aqueous electrolytes, organic electrolytes, and ionic liquids), and optimization methods for ion transport at the electrolyte-electrode. Additionally, the main challenges and forward-looking views are highlighted on the design and development of low-temperature electrolytes and EES devices.
期刊介绍:
Flexible and Printed Electronics is a multidisciplinary journal publishing cutting edge research articles on electronics that can be either flexible, plastic, stretchable, conformable or printed. Research related to electronic materials, manufacturing techniques, components or systems which meets any one (or more) of the above criteria is suitable for publication in the journal. Subjects included in the journal range from flexible materials and printing techniques, design or modelling of electrical systems and components, advanced fabrication methods and bioelectronics, to the properties of devices and end user applications.