Eon-ho Lee , Hyeon Jun Jeon , Jinwoo Choi , Hyun-Taek Choi , Sejin Lee
{"title":"利用激光雷达数据开发水面车辆识别方法:SPD2(带直径和距离的球面分层点投影)","authors":"Eon-ho Lee , Hyeon Jun Jeon , Jinwoo Choi , Hyun-Taek Choi , Sejin Lee","doi":"10.1016/j.dt.2023.09.013","DOIUrl":null,"url":null,"abstract":"<div><p>Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces. For monitoring natural environments and conducting security activities within a certain range using a surface vehicle, the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time. It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles. For this purpose, a LiDAR (light detection and ranging) sensor is used as it can simultaneously obtain 3D information for all directions, relatively robustly and accurately, irrespective of the surrounding environmental conditions. Although the GPS (global-positioning-system) error range exists, obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering. In this study, a three-layer convolutional neural network is applied to classify types of surface vehicles. The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes. Hence, we have proposed a descriptor that converts the 3D point cloud data into 2D image data. To use this descriptor effectively, it is necessary to perform a clustering operation that separates the point clouds for each object. We developed voxel-based clustering for the point cloud clustering. Furthermore, using the descriptor, 3D point cloud data can be converted into a 2D feature image, and the converted 2D image is provided as an input value to the network. We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator. Furthermore, we explore the feasibility of real-time object classification within this framework.</p></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"36 ","pages":"Pages 95-104"},"PeriodicalIF":5.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221491472300257X/pdfft?md5=65ce532c6fc955391046fadd1a2856d1&pid=1-s2.0-S221491472300257X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of vehicle- recognition method on water surfaces using LiDAR data: SPD2 (spherically stratified point projection with diameter and distance)\",\"authors\":\"Eon-ho Lee , Hyeon Jun Jeon , Jinwoo Choi , Hyun-Taek Choi , Sejin Lee\",\"doi\":\"10.1016/j.dt.2023.09.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces. For monitoring natural environments and conducting security activities within a certain range using a surface vehicle, the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time. It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles. For this purpose, a LiDAR (light detection and ranging) sensor is used as it can simultaneously obtain 3D information for all directions, relatively robustly and accurately, irrespective of the surrounding environmental conditions. Although the GPS (global-positioning-system) error range exists, obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering. In this study, a three-layer convolutional neural network is applied to classify types of surface vehicles. The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes. Hence, we have proposed a descriptor that converts the 3D point cloud data into 2D image data. To use this descriptor effectively, it is necessary to perform a clustering operation that separates the point clouds for each object. We developed voxel-based clustering for the point cloud clustering. Furthermore, using the descriptor, 3D point cloud data can be converted into a 2D feature image, and the converted 2D image is provided as an input value to the network. We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator. Furthermore, we explore the feasibility of real-time object classification within this framework.</p></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"36 \",\"pages\":\"Pages 95-104\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221491472300257X/pdfft?md5=65ce532c6fc955391046fadd1a2856d1&pid=1-s2.0-S221491472300257X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221491472300257X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221491472300257X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of vehicle- recognition method on water surfaces using LiDAR data: SPD2 (spherically stratified point projection with diameter and distance)
Swarm robot systems are an important application of autonomous unmanned surface vehicles on water surfaces. For monitoring natural environments and conducting security activities within a certain range using a surface vehicle, the swarm robot system is more efficient than the operation of a single object as the former can reduce cost and save time. It is necessary to detect adjacent surface obstacles robustly to operate a cluster of unmanned surface vehicles. For this purpose, a LiDAR (light detection and ranging) sensor is used as it can simultaneously obtain 3D information for all directions, relatively robustly and accurately, irrespective of the surrounding environmental conditions. Although the GPS (global-positioning-system) error range exists, obtaining measurements of the surface-vessel position can still ensure stability during platoon maneuvering. In this study, a three-layer convolutional neural network is applied to classify types of surface vehicles. The aim of this approach is to redefine the sparse 3D point cloud data as 2D image data with a connotative meaning and subsequently utilize this transformed data for object classification purposes. Hence, we have proposed a descriptor that converts the 3D point cloud data into 2D image data. To use this descriptor effectively, it is necessary to perform a clustering operation that separates the point clouds for each object. We developed voxel-based clustering for the point cloud clustering. Furthermore, using the descriptor, 3D point cloud data can be converted into a 2D feature image, and the converted 2D image is provided as an input value to the network. We intend to verify the validity of the proposed 3D point cloud feature descriptor by using experimental data in the simulator. Furthermore, we explore the feasibility of real-time object classification within this framework.
Defence Technology(防务技术)Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍:
Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.