圆环域上次调和函数的hermite - hadamard型不等式

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Mohamed Jleli, Bessem Samet
{"title":"圆环域上次调和函数的hermite - hadamard型不等式","authors":"Mohamed Jleli, Bessem Samet","doi":"10.1080/01630563.2023.2259198","DOIUrl":null,"url":null,"abstract":"AbstractIn this note, we study the so-called Hermite-Hadamard inequality for the class of subharmonic functions. We first prove an inequality of this type for subharmonic functions over circular ring domains. Next, a new Hermite-Hadamard-type inequality over a disk is deduced. Moreover, we introduce the class of subharmonic functions on the coordinates, which includes the class of convex functions on the coordinates, and establish several new integral inequalities for this class of functions over various product domains: product of disks, product of circular rings and product of a disk and a circular ring.Keywords: Circular ringconvex functionsHermite Hadamard inequalitysubharmonic functionssubharmonic functions on the coordinatesMATHEMATICS SUBJECT CLASSIFICATION: 26B2526D1565D32 Disclosure statementThis work does not have any conflicts of interest.Additional informationFundingThe first author is supported by Researchers Supporting Project number (RSP2023R57), King Saud University, Riyadh, Saudi Arabia.","PeriodicalId":54707,"journal":{"name":"Numerical Functional Analysis and Optimization","volume":"61 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Hermite-Hadamard-Type Inequalities for Subharmonic Functions Over Circular Ring Domains\",\"authors\":\"Mohamed Jleli, Bessem Samet\",\"doi\":\"10.1080/01630563.2023.2259198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn this note, we study the so-called Hermite-Hadamard inequality for the class of subharmonic functions. We first prove an inequality of this type for subharmonic functions over circular ring domains. Next, a new Hermite-Hadamard-type inequality over a disk is deduced. Moreover, we introduce the class of subharmonic functions on the coordinates, which includes the class of convex functions on the coordinates, and establish several new integral inequalities for this class of functions over various product domains: product of disks, product of circular rings and product of a disk and a circular ring.Keywords: Circular ringconvex functionsHermite Hadamard inequalitysubharmonic functionssubharmonic functions on the coordinatesMATHEMATICS SUBJECT CLASSIFICATION: 26B2526D1565D32 Disclosure statementThis work does not have any conflicts of interest.Additional informationFundingThe first author is supported by Researchers Supporting Project number (RSP2023R57), King Saud University, Riyadh, Saudi Arabia.\",\"PeriodicalId\":54707,\"journal\":{\"name\":\"Numerical Functional Analysis and Optimization\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Functional Analysis and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01630563.2023.2259198\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Functional Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01630563.2023.2259198","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了一类次调和函数的Hermite-Hadamard不等式。首先证明了圆环域上次调和函数的一个不等式。其次,推导了一个新的圆盘上的hermite - hadamard型不等式。此外,我们还引入了包括凸函数在内的坐标系上的次调和函数,并建立了这类函数在不同积域上的积分不等式:盘积、环积、盘与环积。关键词:圆凸函数shermite Hadamard不等式次调和函数坐标上的次调和函数数学学科分类:26B2526D1565D32公开声明本工作无任何利益冲突。本文第一作者由沙特阿拉伯利雅得沙特国王大学研究人员支持项目编号(RSP2023R57)资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Hermite-Hadamard-Type Inequalities for Subharmonic Functions Over Circular Ring Domains
AbstractIn this note, we study the so-called Hermite-Hadamard inequality for the class of subharmonic functions. We first prove an inequality of this type for subharmonic functions over circular ring domains. Next, a new Hermite-Hadamard-type inequality over a disk is deduced. Moreover, we introduce the class of subharmonic functions on the coordinates, which includes the class of convex functions on the coordinates, and establish several new integral inequalities for this class of functions over various product domains: product of disks, product of circular rings and product of a disk and a circular ring.Keywords: Circular ringconvex functionsHermite Hadamard inequalitysubharmonic functionssubharmonic functions on the coordinatesMATHEMATICS SUBJECT CLASSIFICATION: 26B2526D1565D32 Disclosure statementThis work does not have any conflicts of interest.Additional informationFundingThe first author is supported by Researchers Supporting Project number (RSP2023R57), King Saud University, Riyadh, Saudi Arabia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
74
审稿时长
6-12 weeks
期刊介绍: Numerical Functional Analysis and Optimization is a journal aimed at development and applications of functional analysis and operator-theoretic methods in numerical analysis, optimization and approximation theory, control theory, signal and image processing, inverse and ill-posed problems, applied and computational harmonic analysis, operator equations, and nonlinear functional analysis. Not all high-quality papers within the union of these fields are within the scope of NFAO. Generalizations and abstractions that significantly advance their fields and reinforce the concrete by providing new insight and important results for problems arising from applications are welcome. On the other hand, technical generalizations for their own sake with window dressing about applications, or variants of known results and algorithms, are not suitable for this journal. Numerical Functional Analysis and Optimization publishes about 70 papers per year. It is our current policy to limit consideration to one submitted paper by any author/co-author per two consecutive years. Exception will be made for seminal papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信