凝胶/纤维复合配方实现基于多模态镇痛减轻慢性疼痛的顺序递送

IF 8.4
Yumiao He, Fengrun Sun, Mohan Li, Tianjiao Ji, Yehong Fang, Gang Tan, Chao Ma, Yuguang Huang
{"title":"凝胶/纤维复合配方实现基于多模态镇痛减轻慢性疼痛的顺序递送","authors":"Yumiao He, Fengrun Sun, Mohan Li, Tianjiao Ji, Yehong Fang, Gang Tan, Chao Ma, Yuguang Huang","doi":"10.1016/j.matdes.2022.111541","DOIUrl":null,"url":null,"abstract":"Pain management plays an essential role in medical care. Previous studies showed that pain is a dynamic process involving multiple mechanisms, which inspired the concept of multimodal analgesia. Therefore, a drug delivery system loaded with a single analgesic may be insufficient for pain control. In this study, an implantable thermogel/electrospun fiber (Gel/Fiber) system loaded with bupivacaine hydrochloride (BUP-HCl) and acetaminophen (APAP) was synthesized. In the composite, BUP-HCl was preferentially released from the hydrophilic thermogel to relieve nociceptive pain, followed by the release of APAP in a more sustained manner from hydrophobic fibers to reduce the inflammatory reaction. Pain behavioral study and activation assay of spinal glial cells in the chronic constriction injury (CCI) model demonstrated the superior analgesic efficacy and chronic pain prevention property of the Gel/Fiber system. Furthermore, the composite exhibited satisfactory biocompatibility, as shown by histological and pharmacokinetic analysis. These results indicate that the successful sequential BUP-HCl/APAP release by a Gel/Fiber system alleviates chronic pain with good biocompatibility.Our study may pave the way for the future application of extended-delivery systems.","PeriodicalId":101318,"journal":{"name":"MATERIALS & DESIGN","volume":"10 1","pages":"0"},"PeriodicalIF":8.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Gel/Fiber composite formulation achieves sequential delivery based on multimodal analgesia reducing chronic pain\",\"authors\":\"Yumiao He, Fengrun Sun, Mohan Li, Tianjiao Ji, Yehong Fang, Gang Tan, Chao Ma, Yuguang Huang\",\"doi\":\"10.1016/j.matdes.2022.111541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pain management plays an essential role in medical care. Previous studies showed that pain is a dynamic process involving multiple mechanisms, which inspired the concept of multimodal analgesia. Therefore, a drug delivery system loaded with a single analgesic may be insufficient for pain control. In this study, an implantable thermogel/electrospun fiber (Gel/Fiber) system loaded with bupivacaine hydrochloride (BUP-HCl) and acetaminophen (APAP) was synthesized. In the composite, BUP-HCl was preferentially released from the hydrophilic thermogel to relieve nociceptive pain, followed by the release of APAP in a more sustained manner from hydrophobic fibers to reduce the inflammatory reaction. Pain behavioral study and activation assay of spinal glial cells in the chronic constriction injury (CCI) model demonstrated the superior analgesic efficacy and chronic pain prevention property of the Gel/Fiber system. Furthermore, the composite exhibited satisfactory biocompatibility, as shown by histological and pharmacokinetic analysis. These results indicate that the successful sequential BUP-HCl/APAP release by a Gel/Fiber system alleviates chronic pain with good biocompatibility.Our study may pave the way for the future application of extended-delivery systems.\",\"PeriodicalId\":101318,\"journal\":{\"name\":\"MATERIALS & DESIGN\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MATERIALS & DESIGN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matdes.2022.111541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATERIALS & DESIGN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.matdes.2022.111541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

疼痛管理在医疗保健中起着至关重要的作用。以往的研究表明,疼痛是一个涉及多种机制的动态过程,这启发了多模态镇痛的概念。因此,单一镇痛药的药物输送系统可能不足以控制疼痛。本研究合成了一种负载盐酸布比卡因(bupivacaine hydrochloride, BUP-HCl)和对乙酰氨基酚(acetaminophen, APAP)的植入式热凝胶/静电纺纤维(Gel/ fiber)体系。在复合材料中,BUP-HCl优先从亲水热凝胶中释放,以减轻伤害性疼痛,其次是APAP从疏水纤维中更持续地释放,以减轻炎症反应。慢性缩窄损伤(CCI)模型的疼痛行为研究和脊髓胶质细胞激活实验表明,凝胶/纤维系统具有良好的镇痛效果和慢性疼痛预防性能。此外,组织和药代动力学分析表明,该复合物具有良好的生物相容性。这些结果表明,凝胶/纤维系统成功的连续释放BUP-HCl/APAP减轻了慢性疼痛,具有良好的生物相容性。我们的研究可能为未来扩展输送系统的应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Gel/Fiber composite formulation achieves sequential delivery based on multimodal analgesia reducing chronic pain
Pain management plays an essential role in medical care. Previous studies showed that pain is a dynamic process involving multiple mechanisms, which inspired the concept of multimodal analgesia. Therefore, a drug delivery system loaded with a single analgesic may be insufficient for pain control. In this study, an implantable thermogel/electrospun fiber (Gel/Fiber) system loaded with bupivacaine hydrochloride (BUP-HCl) and acetaminophen (APAP) was synthesized. In the composite, BUP-HCl was preferentially released from the hydrophilic thermogel to relieve nociceptive pain, followed by the release of APAP in a more sustained manner from hydrophobic fibers to reduce the inflammatory reaction. Pain behavioral study and activation assay of spinal glial cells in the chronic constriction injury (CCI) model demonstrated the superior analgesic efficacy and chronic pain prevention property of the Gel/Fiber system. Furthermore, the composite exhibited satisfactory biocompatibility, as shown by histological and pharmacokinetic analysis. These results indicate that the successful sequential BUP-HCl/APAP release by a Gel/Fiber system alleviates chronic pain with good biocompatibility.Our study may pave the way for the future application of extended-delivery systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Materials and Design is a multidisciplinary journal that publishes original research reports, review articles, and express communications. It covers a wide range of topics including the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, as well as the design of materials and engineering systems, and their applications in technology. The journal aims to integrate various disciplines such as materials science, engineering, physics, and chemistry. By exploring themes from materials to design, it seeks to uncover connections between natural and artificial materials, and between experimental findings and theoretical models. Manuscripts submitted to Materials and Design are expected to offer elements of discovery and surprise, contributing to new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信