Gustavo A. Alvarez, Joseph Casamento, Len van Deurzen, Md Irfan Khan, Kamruzzaman Khan, Eugene Jeong, Elaheh Ahmadi, Huili Grace Xing, Debdeep Jena, Zhiting Tian
{"title":"分子束外延生长氮化铝钪的热导率增强","authors":"Gustavo A. Alvarez, Joseph Casamento, Len van Deurzen, Md Irfan Khan, Kamruzzaman Khan, Eugene Jeong, Elaheh Ahmadi, Huili Grace Xing, Debdeep Jena, Zhiting Tian","doi":"10.1080/21663831.2023.2279667","DOIUrl":null,"url":null,"abstract":"Aluminum scandium nitride (AlScN) has been receiving increasing interest for radio frequency microelectromechanical systems because of their higher achievable bandwidths owing to the larger piezoelectric response of AlScN compared to AlN. However, alloying scandium (Sc) with aluminum nitride (AlN) significantly lowers the thermal conductivity of AlScN due to phonon alloy scattering. Self-heating in AlScN devices potentially limits power handling, constrains the maximum transmission rate, and ultimately leads to thermal failure. We grew plasma-assisted molecular beam epitaxy (PAMBE) AlScN on AlN-Al2O3 and GaN-Al2O3 substrates, and compared the cross-plane thermal conductivity to current work on AlScN grown on Si substrates.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"37 23","pages":"0"},"PeriodicalIF":8.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal conductivity enhancement of aluminum scandium nitride grown by molecular beam epitaxy\",\"authors\":\"Gustavo A. Alvarez, Joseph Casamento, Len van Deurzen, Md Irfan Khan, Kamruzzaman Khan, Eugene Jeong, Elaheh Ahmadi, Huili Grace Xing, Debdeep Jena, Zhiting Tian\",\"doi\":\"10.1080/21663831.2023.2279667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminum scandium nitride (AlScN) has been receiving increasing interest for radio frequency microelectromechanical systems because of their higher achievable bandwidths owing to the larger piezoelectric response of AlScN compared to AlN. However, alloying scandium (Sc) with aluminum nitride (AlN) significantly lowers the thermal conductivity of AlScN due to phonon alloy scattering. Self-heating in AlScN devices potentially limits power handling, constrains the maximum transmission rate, and ultimately leads to thermal failure. We grew plasma-assisted molecular beam epitaxy (PAMBE) AlScN on AlN-Al2O3 and GaN-Al2O3 substrates, and compared the cross-plane thermal conductivity to current work on AlScN grown on Si substrates.\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"37 23\",\"pages\":\"0\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2023.2279667\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2279667","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermal conductivity enhancement of aluminum scandium nitride grown by molecular beam epitaxy
Aluminum scandium nitride (AlScN) has been receiving increasing interest for radio frequency microelectromechanical systems because of their higher achievable bandwidths owing to the larger piezoelectric response of AlScN compared to AlN. However, alloying scandium (Sc) with aluminum nitride (AlN) significantly lowers the thermal conductivity of AlScN due to phonon alloy scattering. Self-heating in AlScN devices potentially limits power handling, constrains the maximum transmission rate, and ultimately leads to thermal failure. We grew plasma-assisted molecular beam epitaxy (PAMBE) AlScN on AlN-Al2O3 and GaN-Al2O3 substrates, and compared the cross-plane thermal conductivity to current work on AlScN grown on Si substrates.
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.