Peter Hacke, David C. Miller, Daniel Pierpont, Tianyu Wu
{"title":"硅异质结技术电池用导电胶带的性能和耐久性","authors":"Peter Hacke, David C. Miller, Daniel Pierpont, Tianyu Wu","doi":"10.1002/pip.3749","DOIUrl":null,"url":null,"abstract":"<p>Electrically conductive tape (ECT) was characterized and used to assemble shingled cell strings at low temperature to achieve high reliability Pb- and Ag-free interconnections. The volume resistivity for two considered ECTs are 0.13 ± 0.06 mΩ·cm and 0.47 ± 0.20 mΩ·cm and specific contact resistances, 6.85± 2.00 mΩ·cm<sup>2</sup> and 6.30 ± 0.37 mΩ·cm<sup>2</sup> using the emerging IEC 62788-8-1 Technical Specification for assessment of electrically conductive adhesives (ECA). Durability and performance of the technology in glass–glass mini modules were evaluated with temperature cycling, damp heat testing, and combined-accelerated stress testing (CAST). Through temperature cycling (−40°C to 85°C) applying five times the mini module short-circuit current in forward bias and in the multi climate CAST protocol, there was negligible degradation of fill factor after replacing connectors at the modules' cable leads; however, CAST resulted in short circuit current loss attributed to degradation in light collection by the cells, not the ECT. The IEC 61215-2 85°C, 85% relative humidity damp heat testing showed susceptibility of the HJT cells to effects of humidity in the electroluminescence intensity around the module perimeter that degraded power performance by 4% (relative). Contrasting the IEC 61215-2 qualification testing-based damp heat testing with CAST, factors such as the optical stress of CAST may precipitate the degradation of the modules whereas the humidity levels and duration of IEC 61215-2 damp heat testing may lead to excessive levels of humidity diffused into the modules, potentially resulting in degradation that is unrepresentative of the field.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 1","pages":"16-26"},"PeriodicalIF":8.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance and durability of electrically conductive tape for shingled Si heterojunction technology cells\",\"authors\":\"Peter Hacke, David C. Miller, Daniel Pierpont, Tianyu Wu\",\"doi\":\"10.1002/pip.3749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrically conductive tape (ECT) was characterized and used to assemble shingled cell strings at low temperature to achieve high reliability Pb- and Ag-free interconnections. The volume resistivity for two considered ECTs are 0.13 ± 0.06 mΩ·cm and 0.47 ± 0.20 mΩ·cm and specific contact resistances, 6.85± 2.00 mΩ·cm<sup>2</sup> and 6.30 ± 0.37 mΩ·cm<sup>2</sup> using the emerging IEC 62788-8-1 Technical Specification for assessment of electrically conductive adhesives (ECA). Durability and performance of the technology in glass–glass mini modules were evaluated with temperature cycling, damp heat testing, and combined-accelerated stress testing (CAST). Through temperature cycling (−40°C to 85°C) applying five times the mini module short-circuit current in forward bias and in the multi climate CAST protocol, there was negligible degradation of fill factor after replacing connectors at the modules' cable leads; however, CAST resulted in short circuit current loss attributed to degradation in light collection by the cells, not the ECT. The IEC 61215-2 85°C, 85% relative humidity damp heat testing showed susceptibility of the HJT cells to effects of humidity in the electroluminescence intensity around the module perimeter that degraded power performance by 4% (relative). Contrasting the IEC 61215-2 qualification testing-based damp heat testing with CAST, factors such as the optical stress of CAST may precipitate the degradation of the modules whereas the humidity levels and duration of IEC 61215-2 damp heat testing may lead to excessive levels of humidity diffused into the modules, potentially resulting in degradation that is unrepresentative of the field.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"33 1\",\"pages\":\"16-26\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3749\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3749","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Performance and durability of electrically conductive tape for shingled Si heterojunction technology cells
Electrically conductive tape (ECT) was characterized and used to assemble shingled cell strings at low temperature to achieve high reliability Pb- and Ag-free interconnections. The volume resistivity for two considered ECTs are 0.13 ± 0.06 mΩ·cm and 0.47 ± 0.20 mΩ·cm and specific contact resistances, 6.85± 2.00 mΩ·cm2 and 6.30 ± 0.37 mΩ·cm2 using the emerging IEC 62788-8-1 Technical Specification for assessment of electrically conductive adhesives (ECA). Durability and performance of the technology in glass–glass mini modules were evaluated with temperature cycling, damp heat testing, and combined-accelerated stress testing (CAST). Through temperature cycling (−40°C to 85°C) applying five times the mini module short-circuit current in forward bias and in the multi climate CAST protocol, there was negligible degradation of fill factor after replacing connectors at the modules' cable leads; however, CAST resulted in short circuit current loss attributed to degradation in light collection by the cells, not the ECT. The IEC 61215-2 85°C, 85% relative humidity damp heat testing showed susceptibility of the HJT cells to effects of humidity in the electroluminescence intensity around the module perimeter that degraded power performance by 4% (relative). Contrasting the IEC 61215-2 qualification testing-based damp heat testing with CAST, factors such as the optical stress of CAST may precipitate the degradation of the modules whereas the humidity levels and duration of IEC 61215-2 damp heat testing may lead to excessive levels of humidity diffused into the modules, potentially resulting in degradation that is unrepresentative of the field.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.