关于有理函数的伽马线的总长度

IF 0.6 4区 数学 Q3 MATHEMATICS
Yi C. Huang, Jian-Yang Zhang
{"title":"关于有理函数的伽马线的总长度","authors":"Yi C. Huang, Jian-Yang Zhang","doi":"10.1080/17476933.2023.2280958","DOIUrl":null,"url":null,"abstract":"AbstractIn this paper, we present a simple direct proof of an integration lemma due to Barsegian, Sergeev and Montes-Rodrigues, and extend to rational functions their upper estimates on the total length of Gamma-lines in complex plane.KEYWORDS: Gamma-lineslevel setsrational functionsmeromorphic functionsAMS SUBJECT CLASSIFICATIONS: Primary 30C10Secondary 11C08 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingResearch of the authors is supported by the National NSF grant of China (no. 11801274). YCH thanks Professor Barsegian for helpful and encouraging comments.","PeriodicalId":51229,"journal":{"name":"Complex Variables and Elliptic Equations","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the total length of Gamma-lines for rational functions\",\"authors\":\"Yi C. Huang, Jian-Yang Zhang\",\"doi\":\"10.1080/17476933.2023.2280958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn this paper, we present a simple direct proof of an integration lemma due to Barsegian, Sergeev and Montes-Rodrigues, and extend to rational functions their upper estimates on the total length of Gamma-lines in complex plane.KEYWORDS: Gamma-lineslevel setsrational functionsmeromorphic functionsAMS SUBJECT CLASSIFICATIONS: Primary 30C10Secondary 11C08 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingResearch of the authors is supported by the National NSF grant of China (no. 11801274). YCH thanks Professor Barsegian for helpful and encouraging comments.\",\"PeriodicalId\":51229,\"journal\":{\"name\":\"Complex Variables and Elliptic Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables and Elliptic Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17476933.2023.2280958\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables and Elliptic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17476933.2023.2280958","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文给出了Barsegian、Sergeev和Montes-Rodrigues的一个积分引理的简单直接证明,并将它们在复平面上对伽马线总长的上估计推广到有理函数。关键词:伽玛线水平集理性函数同胚函数主题分类:一级30c10二级11C08披露声明作者未报告潜在利益冲突。作者的研究得到中国国家自然科学基金(NSF)资助(no. 1)。11801274)。YCH感谢Barsegian教授的帮助和鼓励的意见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the total length of Gamma-lines for rational functions
AbstractIn this paper, we present a simple direct proof of an integration lemma due to Barsegian, Sergeev and Montes-Rodrigues, and extend to rational functions their upper estimates on the total length of Gamma-lines in complex plane.KEYWORDS: Gamma-lineslevel setsrational functionsmeromorphic functionsAMS SUBJECT CLASSIFICATIONS: Primary 30C10Secondary 11C08 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingResearch of the authors is supported by the National NSF grant of China (no. 11801274). YCH thanks Professor Barsegian for helpful and encouraging comments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
11.10%
发文量
97
审稿时长
6-12 weeks
期刊介绍: Complex Variables and Elliptic Equations is devoted to complex variables and elliptic equations including linear and nonlinear equations and systems, function theoretical methods and applications, functional analytic, topological and variational methods, spectral theory, sub-elliptic and hypoelliptic equations, multivariable complex analysis and analysis on Lie groups, homogeneous spaces and CR-manifolds. The Journal was formally published as Complex Variables Theory and Application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信