{"title":"具有分组变量的高维模型中惩罚非对称lq -范数的自动选择","authors":"Angelo Alcaraz, Gabriela Ciuperca","doi":"10.1080/02331888.2023.2256948","DOIUrl":null,"url":null,"abstract":"The paper focuses on the automatic selection of the grouped explanatory variables in a high-dimensional model, when the model blue error is asymmetric. After introducing the model and notations, we define the adaptive group LASSO expectile estimator for which we prove the oracle properties: the sparsity and the asymptotic normality. Afterwards, the results are generalized by considering the asymmetric Lq-norm loss function. The theoretical results are obtained in several cases with respect to the number of variable groups. This number can be fixed or dependent on the sample size n, with the possibility that it is of the same order as n. Note that these new estimators allow us to consider weaker assumptions on the data and on the model errors than the usual ones. Simulation study demonstrates the competitive performance of the proposed penalized expectile regression, especially when the samples size is close to the number of explanatory variables and model errors are asymmetrical. An application on air pollution data is considered.","PeriodicalId":54358,"journal":{"name":"Statistics","volume":"24 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic selection by penalized asymmetric <i>L<sub>q</sub></i>-norm in a high-dimensional model with grouped variables\",\"authors\":\"Angelo Alcaraz, Gabriela Ciuperca\",\"doi\":\"10.1080/02331888.2023.2256948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper focuses on the automatic selection of the grouped explanatory variables in a high-dimensional model, when the model blue error is asymmetric. After introducing the model and notations, we define the adaptive group LASSO expectile estimator for which we prove the oracle properties: the sparsity and the asymptotic normality. Afterwards, the results are generalized by considering the asymmetric Lq-norm loss function. The theoretical results are obtained in several cases with respect to the number of variable groups. This number can be fixed or dependent on the sample size n, with the possibility that it is of the same order as n. Note that these new estimators allow us to consider weaker assumptions on the data and on the model errors than the usual ones. Simulation study demonstrates the competitive performance of the proposed penalized expectile regression, especially when the samples size is close to the number of explanatory variables and model errors are asymmetrical. An application on air pollution data is considered.\",\"PeriodicalId\":54358,\"journal\":{\"name\":\"Statistics\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02331888.2023.2256948\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02331888.2023.2256948","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Automatic selection by penalized asymmetric Lq-norm in a high-dimensional model with grouped variables
The paper focuses on the automatic selection of the grouped explanatory variables in a high-dimensional model, when the model blue error is asymmetric. After introducing the model and notations, we define the adaptive group LASSO expectile estimator for which we prove the oracle properties: the sparsity and the asymptotic normality. Afterwards, the results are generalized by considering the asymmetric Lq-norm loss function. The theoretical results are obtained in several cases with respect to the number of variable groups. This number can be fixed or dependent on the sample size n, with the possibility that it is of the same order as n. Note that these new estimators allow us to consider weaker assumptions on the data and on the model errors than the usual ones. Simulation study demonstrates the competitive performance of the proposed penalized expectile regression, especially when the samples size is close to the number of explanatory variables and model errors are asymmetrical. An application on air pollution data is considered.
期刊介绍:
Statistics publishes papers developing and analysing new methods for any active field of statistics, motivated by real-life problems. Papers submitted for consideration should provide interesting and novel contributions to statistical theory and its applications with rigorous mathematical results and proofs. Moreover, numerical simulations and application to real data sets can improve the quality of papers, and should be included where appropriate. Statistics does not publish papers which represent mere application of existing procedures to case studies, and papers are required to contain methodological or theoretical innovation. Topics of interest include, for example, nonparametric statistics, time series, analysis of topological or functional data. Furthermore the journal also welcomes submissions in the field of theoretical econometrics and its links to mathematical statistics.