{"title":"MQTT和区块链分片:一种提高安全性和效率的用户控制数据访问方法","authors":"P.S. Akshatha, S.M. Dilip Kumar","doi":"10.1016/j.bcra.2023.100158","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid growth of the Internet of Things (IoT) has raised security concerns, including MQTT protocol-based applications that lack built-in security features and rely on resource-intensive Transport Layer Security (TLS) protocols. This paper presents an approach that utilizes blockchain technology to enhance the security of MQTT communication while maintaining efficiency. This approach involves using blockchain sharding, which enables higher scalability, improved performance, and reduced computational overhead compared to traditional blockchain approaches, making it well-suited for resource-constrained IoT environments. This approach leverages Ethereum blockchain's smart contract mechanism to ensure trust, accountability, and user privacy. Specifically, we introduce a shard-based consensus mechanism that enables improved security while minimizing computational overhead. We also provide a user-controlled and secured algorithm using Proof-of-Access implementation to decentralize user access control to data stored in the blockchain network. The proposed approach is analyzed for usability, including metrics such as bandwidth consumption, CPU usage, memory usage, delay, access time, storage time, and jitter, which are essential for IoT application requirements. The analysis demonstrated that the approach reduces resource consumption, and the proposed system outperforms TLS and existing blockchain approaches in these metrics, regardless of the choice of the MQTT broker. Additionally, thoroughly addressing future research directions, including issues and challenges, ensures careful consideration of potential advancements in this domain.</p></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"4 4","pages":"Article 100158"},"PeriodicalIF":6.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096720923000337/pdfft?md5=a87db6be992926cd057321b8bd24cf25&pid=1-s2.0-S2096720923000337-main.pdf","citationCount":"0","resultStr":"{\"title\":\"MQTT and blockchain sharding: An approach to user-controlled data access with improved security and efficiency\",\"authors\":\"P.S. Akshatha, S.M. Dilip Kumar\",\"doi\":\"10.1016/j.bcra.2023.100158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid growth of the Internet of Things (IoT) has raised security concerns, including MQTT protocol-based applications that lack built-in security features and rely on resource-intensive Transport Layer Security (TLS) protocols. This paper presents an approach that utilizes blockchain technology to enhance the security of MQTT communication while maintaining efficiency. This approach involves using blockchain sharding, which enables higher scalability, improved performance, and reduced computational overhead compared to traditional blockchain approaches, making it well-suited for resource-constrained IoT environments. This approach leverages Ethereum blockchain's smart contract mechanism to ensure trust, accountability, and user privacy. Specifically, we introduce a shard-based consensus mechanism that enables improved security while minimizing computational overhead. We also provide a user-controlled and secured algorithm using Proof-of-Access implementation to decentralize user access control to data stored in the blockchain network. The proposed approach is analyzed for usability, including metrics such as bandwidth consumption, CPU usage, memory usage, delay, access time, storage time, and jitter, which are essential for IoT application requirements. The analysis demonstrated that the approach reduces resource consumption, and the proposed system outperforms TLS and existing blockchain approaches in these metrics, regardless of the choice of the MQTT broker. Additionally, thoroughly addressing future research directions, including issues and challenges, ensures careful consideration of potential advancements in this domain.</p></div>\",\"PeriodicalId\":53141,\"journal\":{\"name\":\"Blockchain-Research and Applications\",\"volume\":\"4 4\",\"pages\":\"Article 100158\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096720923000337/pdfft?md5=a87db6be992926cd057321b8bd24cf25&pid=1-s2.0-S2096720923000337-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blockchain-Research and Applications\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096720923000337\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720923000337","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MQTT and blockchain sharding: An approach to user-controlled data access with improved security and efficiency
The rapid growth of the Internet of Things (IoT) has raised security concerns, including MQTT protocol-based applications that lack built-in security features and rely on resource-intensive Transport Layer Security (TLS) protocols. This paper presents an approach that utilizes blockchain technology to enhance the security of MQTT communication while maintaining efficiency. This approach involves using blockchain sharding, which enables higher scalability, improved performance, and reduced computational overhead compared to traditional blockchain approaches, making it well-suited for resource-constrained IoT environments. This approach leverages Ethereum blockchain's smart contract mechanism to ensure trust, accountability, and user privacy. Specifically, we introduce a shard-based consensus mechanism that enables improved security while minimizing computational overhead. We also provide a user-controlled and secured algorithm using Proof-of-Access implementation to decentralize user access control to data stored in the blockchain network. The proposed approach is analyzed for usability, including metrics such as bandwidth consumption, CPU usage, memory usage, delay, access time, storage time, and jitter, which are essential for IoT application requirements. The analysis demonstrated that the approach reduces resource consumption, and the proposed system outperforms TLS and existing blockchain approaches in these metrics, regardless of the choice of the MQTT broker. Additionally, thoroughly addressing future research directions, including issues and challenges, ensures careful consideration of potential advancements in this domain.
期刊介绍:
Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.