Shari Fox, Alex Crawford, Michelle McCrystall, Julienne Stroeve, Jennifer Lukovich, Nicole Loeb, Jerry Natanine, Mark Serreze
{"title":"北极极端天气和对努纳武特地区社区的影响:一个冬季风暴的案例研究和对当地气候变化防范的教训","authors":"Shari Fox, Alex Crawford, Michelle McCrystall, Julienne Stroeve, Jennifer Lukovich, Nicole Loeb, Jerry Natanine, Mark Serreze","doi":"10.1175/wcas-d-23-0006.1","DOIUrl":null,"url":null,"abstract":"Abstract Arctic communities are experienced with severe weather, but impacts can still be serious, particularly when the intensity or persistence of hazardous conditions is extreme. Such was the case for the community of Clyde River (Kangiqtugaapik), Nunavut, Canada, which experienced 33 blizzard days during winter 2021/22—likely the most at Clyde River since at least 1978/79. Blizzard conditions resulted from unusually frequent high winds rather than excessive snowfall. The most severe stretch included eight blizzard days over an 11-day period, with top wind gusts of 98 km h −1 . Winds caused severe drifting, covering homes and blocking streets. Broken heavy equipment, including snow-clearing machines, compounded the impacts, leaving homes without essential services like water delivery and sewage pump-out for days. Residents reported the storms and resulting impacts as some of the worst in memory. The drifting and volume of snow, combined with the lack of available resources to manage it, obliged the community to declare a state of emergency. Projections of increased Arctic precipitation and extreme weather events points to the need for communities to have proper resources and supports, including preparedness and adaptation and mitigation strategies, so they can be better equipped to handle storm and blizzard impacts such as those experienced at Clyde River in the winter of 2021/22. Additional steps that can be implemented to better support and prepare communities include investing in preparedness planning, expanded and enhanced weather information and services, community land-based programming to transfer Inuit knowledge and skills, assessing the usefulness of current forecasts, and new approaches to community planning. Significance Statement In this study, we consider the winter of 2021/22, during which the community of Clyde River (Kangiqtugaapik), Nunavut experienced 33 days with blizzard conditions—more than any other year since at least 1978/79. Blizzards are characterized by strong winds and blowing snow. Low visibility impedes travel, and drifting snow blocks roads and can bury equipment and buildings. In this case, broken snow-clearing equipment and other infrastructure challenges also hampered the community’s ability to respond, and residents went days without essential services. Several studies suggest that extreme winds will become more common in the Baffin Bay region in the future. This study demonstrates the need for proper resourcing of communities for preparedness, response, and adaptation strategies, especially with the possibility of extreme winter weather becoming more common.","PeriodicalId":48971,"journal":{"name":"Weather Climate and Society","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme Arctic Weather and Community Impacts in Nunavut: A Case Study of One Winter’s Storms and Lessons for Local Climate Change Preparedness\",\"authors\":\"Shari Fox, Alex Crawford, Michelle McCrystall, Julienne Stroeve, Jennifer Lukovich, Nicole Loeb, Jerry Natanine, Mark Serreze\",\"doi\":\"10.1175/wcas-d-23-0006.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Arctic communities are experienced with severe weather, but impacts can still be serious, particularly when the intensity or persistence of hazardous conditions is extreme. Such was the case for the community of Clyde River (Kangiqtugaapik), Nunavut, Canada, which experienced 33 blizzard days during winter 2021/22—likely the most at Clyde River since at least 1978/79. Blizzard conditions resulted from unusually frequent high winds rather than excessive snowfall. The most severe stretch included eight blizzard days over an 11-day period, with top wind gusts of 98 km h −1 . Winds caused severe drifting, covering homes and blocking streets. Broken heavy equipment, including snow-clearing machines, compounded the impacts, leaving homes without essential services like water delivery and sewage pump-out for days. Residents reported the storms and resulting impacts as some of the worst in memory. The drifting and volume of snow, combined with the lack of available resources to manage it, obliged the community to declare a state of emergency. Projections of increased Arctic precipitation and extreme weather events points to the need for communities to have proper resources and supports, including preparedness and adaptation and mitigation strategies, so they can be better equipped to handle storm and blizzard impacts such as those experienced at Clyde River in the winter of 2021/22. Additional steps that can be implemented to better support and prepare communities include investing in preparedness planning, expanded and enhanced weather information and services, community land-based programming to transfer Inuit knowledge and skills, assessing the usefulness of current forecasts, and new approaches to community planning. Significance Statement In this study, we consider the winter of 2021/22, during which the community of Clyde River (Kangiqtugaapik), Nunavut experienced 33 days with blizzard conditions—more than any other year since at least 1978/79. Blizzards are characterized by strong winds and blowing snow. Low visibility impedes travel, and drifting snow blocks roads and can bury equipment and buildings. In this case, broken snow-clearing equipment and other infrastructure challenges also hampered the community’s ability to respond, and residents went days without essential services. Several studies suggest that extreme winds will become more common in the Baffin Bay region in the future. This study demonstrates the need for proper resourcing of communities for preparedness, response, and adaptation strategies, especially with the possibility of extreme winter weather becoming more common.\",\"PeriodicalId\":48971,\"journal\":{\"name\":\"Weather Climate and Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather Climate and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/wcas-d-23-0006.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather Climate and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/wcas-d-23-0006.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Extreme Arctic Weather and Community Impacts in Nunavut: A Case Study of One Winter’s Storms and Lessons for Local Climate Change Preparedness
Abstract Arctic communities are experienced with severe weather, but impacts can still be serious, particularly when the intensity or persistence of hazardous conditions is extreme. Such was the case for the community of Clyde River (Kangiqtugaapik), Nunavut, Canada, which experienced 33 blizzard days during winter 2021/22—likely the most at Clyde River since at least 1978/79. Blizzard conditions resulted from unusually frequent high winds rather than excessive snowfall. The most severe stretch included eight blizzard days over an 11-day period, with top wind gusts of 98 km h −1 . Winds caused severe drifting, covering homes and blocking streets. Broken heavy equipment, including snow-clearing machines, compounded the impacts, leaving homes without essential services like water delivery and sewage pump-out for days. Residents reported the storms and resulting impacts as some of the worst in memory. The drifting and volume of snow, combined with the lack of available resources to manage it, obliged the community to declare a state of emergency. Projections of increased Arctic precipitation and extreme weather events points to the need for communities to have proper resources and supports, including preparedness and adaptation and mitigation strategies, so they can be better equipped to handle storm and blizzard impacts such as those experienced at Clyde River in the winter of 2021/22. Additional steps that can be implemented to better support and prepare communities include investing in preparedness planning, expanded and enhanced weather information and services, community land-based programming to transfer Inuit knowledge and skills, assessing the usefulness of current forecasts, and new approaches to community planning. Significance Statement In this study, we consider the winter of 2021/22, during which the community of Clyde River (Kangiqtugaapik), Nunavut experienced 33 days with blizzard conditions—more than any other year since at least 1978/79. Blizzards are characterized by strong winds and blowing snow. Low visibility impedes travel, and drifting snow blocks roads and can bury equipment and buildings. In this case, broken snow-clearing equipment and other infrastructure challenges also hampered the community’s ability to respond, and residents went days without essential services. Several studies suggest that extreme winds will become more common in the Baffin Bay region in the future. This study demonstrates the need for proper resourcing of communities for preparedness, response, and adaptation strategies, especially with the possibility of extreme winter weather becoming more common.
期刊介绍:
Weather, Climate, and Society (WCAS) publishes research that encompasses economics, policy analysis, political science, history, and institutional, social, and behavioral scholarship relating to weather and climate, including climate change. Contributions must include original social science research, evidence-based analysis, and relevance to the interactions of weather and climate with society.