稳健的失真风险测量

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE
Carole Bernard, Silvana M. Pesenti, Steven Vanduffel
{"title":"稳健的失真风险测量","authors":"Carole Bernard,&nbsp;Silvana M. Pesenti,&nbsp;Steven Vanduffel","doi":"10.1111/mafi.12414","DOIUrl":null,"url":null,"abstract":"<p>The robustness of risk measures to changes in underlying loss distributions (distributional uncertainty) is of crucial importance in making well-informed decisions. In this paper, we quantify, for the class of distortion risk measures with an absolutely continuous distortion function, its robustness to distributional uncertainty by deriving its largest (smallest) value when the underlying loss distribution has a known mean and variance and, furthermore, lies within a ball—specified through the Wasserstein distance—around a reference distribution. We employ the technique of isotonic projections to provide for these distortion risk measures a complete characterization of sharp bounds on their value, and we obtain quasi-explicit bounds in the case of Value-at-Risk and Range-Value-at-Risk. We extend our results to account for uncertainty in the first two moments and provide applications to portfolio optimization and to model risk assessment.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":"34 3","pages":"774-818"},"PeriodicalIF":1.6000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12414","citationCount":"0","resultStr":"{\"title\":\"Robust distortion risk measures\",\"authors\":\"Carole Bernard,&nbsp;Silvana M. Pesenti,&nbsp;Steven Vanduffel\",\"doi\":\"10.1111/mafi.12414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The robustness of risk measures to changes in underlying loss distributions (distributional uncertainty) is of crucial importance in making well-informed decisions. In this paper, we quantify, for the class of distortion risk measures with an absolutely continuous distortion function, its robustness to distributional uncertainty by deriving its largest (smallest) value when the underlying loss distribution has a known mean and variance and, furthermore, lies within a ball—specified through the Wasserstein distance—around a reference distribution. We employ the technique of isotonic projections to provide for these distortion risk measures a complete characterization of sharp bounds on their value, and we obtain quasi-explicit bounds in the case of Value-at-Risk and Range-Value-at-Risk. We extend our results to account for uncertainty in the first two moments and provide applications to portfolio optimization and to model risk assessment.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":\"34 3\",\"pages\":\"774-818\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mafi.12414\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12414\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12414","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

风险度量对基本损失分布变化(分布不确定性)的稳健性对做出明智决策至关重要。在本文中,我们对一类具有绝对连续扭曲函数的扭曲风险度量进行了量化,当基础损失分布具有已知的均值和方差,并且位于通过瓦瑟施泰因距离围绕参考分布所指定的球范围内时,通过推导其最大(最小)值,得出其对分布不确定性的稳健性。我们利用等效投影技术,为这些扭曲风险度量提供了一个完整的特征,即对其值的尖锐约束,我们还获得了风险价值和风险范围价值的准明确约束。我们扩展了我们的结果,以考虑前两个时刻的不确定性,并将其应用于投资组合优化和模型风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust distortion risk measures

Robust distortion risk measures

The robustness of risk measures to changes in underlying loss distributions (distributional uncertainty) is of crucial importance in making well-informed decisions. In this paper, we quantify, for the class of distortion risk measures with an absolutely continuous distortion function, its robustness to distributional uncertainty by deriving its largest (smallest) value when the underlying loss distribution has a known mean and variance and, furthermore, lies within a ball—specified through the Wasserstein distance—around a reference distribution. We employ the technique of isotonic projections to provide for these distortion risk measures a complete characterization of sharp bounds on their value, and we obtain quasi-explicit bounds in the case of Value-at-Risk and Range-Value-at-Risk. We extend our results to account for uncertainty in the first two moments and provide applications to portfolio optimization and to model risk assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信