Xiaoyang Wang , Xiaoxing Qin , Jiahao Tan , Linxi Yang , Lixing Ou , Xiaoqian Duan , Yusong Deng
{"title":"含水量和干密度对华南丘陵花岗岩地区坍塌墙剪切强度参数的影响","authors":"Xiaoyang Wang , Xiaoxing Qin , Jiahao Tan , Linxi Yang , Lixing Ou , Xiaoqian Duan , Yusong Deng","doi":"10.1016/j.iswcr.2023.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>The changes in the mechanical properties of collapsing walls under the influence of natural factors in the hilly area of southern China need to be determined. We systematically studied the influence of the interaction of dry density ρ (1.0, 1.1, 1.2, 1.3, 1.4 g/cm<sup>3</sup>) and moisture content ω (0.05, 0.1, 0.15, 0.2, 0.25 g/g) on the stability of four soil layers in a collapsing wall. The soil cohesion decreased with increasing soil depth. The cohesion force initially increased and then decreased with increasing ω and increased with increasing ρ; the internal friction angle was mainly affected by ω and decreased with increasing ω. The cohesion could be used to effectively characterize the stability of the collapsing wall. The shear strength index was modeled based on interaction between the dry density and moisture content (R<sup>2</sup> > 0.95). The optimal combination of moisture content and dry density was obtained, and the collapsing wall was in the most stable state at a moisture content of 0.12–0.19 g/g and a dry density of 1.40 g/cm<sup>3</sup>. Based on the analysis of the critical height and safety factor (FS), the FS values of the sandy layer (C) was 0.53 and 0.57 for ω values of 0.25 g/g and 0.05 g/g, respectively. In the alternating process of soil wetting and drying, the basic properties of the soil changed; caused traceback erosion, and thereby affected the stability of the collapsing wall. Our study provides a theoretical basis for the investigation of the factors influencing the stability of collapsing walls.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 3","pages":"Pages 697-713"},"PeriodicalIF":7.3000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000874/pdfft?md5=a5dd691ecc702cb55151b1b8820f9880&pid=1-s2.0-S2095633923000874-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of the moisture content and dry density on the shear strength parameters of collapsing wall in hilly granite areas of South China\",\"authors\":\"Xiaoyang Wang , Xiaoxing Qin , Jiahao Tan , Linxi Yang , Lixing Ou , Xiaoqian Duan , Yusong Deng\",\"doi\":\"10.1016/j.iswcr.2023.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The changes in the mechanical properties of collapsing walls under the influence of natural factors in the hilly area of southern China need to be determined. We systematically studied the influence of the interaction of dry density ρ (1.0, 1.1, 1.2, 1.3, 1.4 g/cm<sup>3</sup>) and moisture content ω (0.05, 0.1, 0.15, 0.2, 0.25 g/g) on the stability of four soil layers in a collapsing wall. The soil cohesion decreased with increasing soil depth. The cohesion force initially increased and then decreased with increasing ω and increased with increasing ρ; the internal friction angle was mainly affected by ω and decreased with increasing ω. The cohesion could be used to effectively characterize the stability of the collapsing wall. The shear strength index was modeled based on interaction between the dry density and moisture content (R<sup>2</sup> > 0.95). The optimal combination of moisture content and dry density was obtained, and the collapsing wall was in the most stable state at a moisture content of 0.12–0.19 g/g and a dry density of 1.40 g/cm<sup>3</sup>. Based on the analysis of the critical height and safety factor (FS), the FS values of the sandy layer (C) was 0.53 and 0.57 for ω values of 0.25 g/g and 0.05 g/g, respectively. In the alternating process of soil wetting and drying, the basic properties of the soil changed; caused traceback erosion, and thereby affected the stability of the collapsing wall. Our study provides a theoretical basis for the investigation of the factors influencing the stability of collapsing walls.</p></div>\",\"PeriodicalId\":48622,\"journal\":{\"name\":\"International Soil and Water Conservation Research\",\"volume\":\"12 3\",\"pages\":\"Pages 697-713\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2023-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095633923000874/pdfft?md5=a5dd691ecc702cb55151b1b8820f9880&pid=1-s2.0-S2095633923000874-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Soil and Water Conservation Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095633923000874\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000874","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effect of the moisture content and dry density on the shear strength parameters of collapsing wall in hilly granite areas of South China
The changes in the mechanical properties of collapsing walls under the influence of natural factors in the hilly area of southern China need to be determined. We systematically studied the influence of the interaction of dry density ρ (1.0, 1.1, 1.2, 1.3, 1.4 g/cm3) and moisture content ω (0.05, 0.1, 0.15, 0.2, 0.25 g/g) on the stability of four soil layers in a collapsing wall. The soil cohesion decreased with increasing soil depth. The cohesion force initially increased and then decreased with increasing ω and increased with increasing ρ; the internal friction angle was mainly affected by ω and decreased with increasing ω. The cohesion could be used to effectively characterize the stability of the collapsing wall. The shear strength index was modeled based on interaction between the dry density and moisture content (R2 > 0.95). The optimal combination of moisture content and dry density was obtained, and the collapsing wall was in the most stable state at a moisture content of 0.12–0.19 g/g and a dry density of 1.40 g/cm3. Based on the analysis of the critical height and safety factor (FS), the FS values of the sandy layer (C) was 0.53 and 0.57 for ω values of 0.25 g/g and 0.05 g/g, respectively. In the alternating process of soil wetting and drying, the basic properties of the soil changed; caused traceback erosion, and thereby affected the stability of the collapsing wall. Our study provides a theoretical basis for the investigation of the factors influencing the stability of collapsing walls.
期刊介绍:
The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation.
The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards.
Examples of appropriate topical areas include (but are not limited to):
• Conservation models, tools, and technologies
• Conservation agricultural
• Soil health resources, indicators, assessment, and management
• Land degradation
• Sustainable development
• Soil erosion and its control
• Soil erosion processes
• Water resources assessment and management
• Watershed management
• Soil erosion models
• Literature review on topics related soil and water conservation research