用于钙钛矿/硅串联太阳能电池的石墨烯透明导电电极

IF 8 2区 材料科学 Q1 ENERGY & FUELS
John O'Sullivan, Matthew Wright, Xinya Niu, Poppy Miller, Peter R. Wilshaw, Ruy S. Bonilla
{"title":"用于钙钛矿/硅串联太阳能电池的石墨烯透明导电电极","authors":"John O'Sullivan, Matthew Wright, Xinya Niu, Poppy Miller, Peter R. Wilshaw, Ruy S. Bonilla","doi":"10.1002/pip.3739","DOIUrl":null,"url":null,"abstract":"Indium‐based transparent conducting electrodes (TCEs) are a major limiting factor in perovskite/silicon tandem cell scalability, while also limiting maximum cell efficiencies. In this work, we propose a novel TCE based on electrostatically doped graphene monolayers to circumvent these challenges. The electrode is enabled by a thin film dielectric that is charged and interfaced to a graphene film, optimally exploiting electrostatic doping. The field effect mechanism allows the modulation of charge carriers in monolayer graphene as a function of charge concentration in the dielectric thin film. Electrostatic charge was deposited on SiO2 membranes, and graphene transferred onto them exhibited a reduction in sheet resistance because of the induced charge carriers. We show a reduction in sheet resistance of graphene by 60% in just 3 min of dielectric charging, without impacting the transmission of light through the film stack. Hall effect measurements indicated that the mobility of the films was not significantly degraded. The deposition of negative electrostatic charge reversed this effect, allowing for precise tunability of charge concentration from n‐ to p‐type. We develop a model to determine the required sheet resistance of a graphene TCE with 97% transmittance in a perovskite/silicon tandem cell. As the technique here reported does not impact transmittance, a graphene TCE with a sheet resistance below 50 Ω/□ could enable efficiencies up to 44%, presenting a promising alternative to indium‐based TCEs.","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"31 12","pages":"1478-1492"},"PeriodicalIF":8.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3739","citationCount":"0","resultStr":"{\"title\":\"Towards a graphene transparent conducting electrode for perovskite/silicon tandem solar cells\",\"authors\":\"John O'Sullivan, Matthew Wright, Xinya Niu, Poppy Miller, Peter R. Wilshaw, Ruy S. Bonilla\",\"doi\":\"10.1002/pip.3739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indium‐based transparent conducting electrodes (TCEs) are a major limiting factor in perovskite/silicon tandem cell scalability, while also limiting maximum cell efficiencies. In this work, we propose a novel TCE based on electrostatically doped graphene monolayers to circumvent these challenges. The electrode is enabled by a thin film dielectric that is charged and interfaced to a graphene film, optimally exploiting electrostatic doping. The field effect mechanism allows the modulation of charge carriers in monolayer graphene as a function of charge concentration in the dielectric thin film. Electrostatic charge was deposited on SiO2 membranes, and graphene transferred onto them exhibited a reduction in sheet resistance because of the induced charge carriers. We show a reduction in sheet resistance of graphene by 60% in just 3 min of dielectric charging, without impacting the transmission of light through the film stack. Hall effect measurements indicated that the mobility of the films was not significantly degraded. The deposition of negative electrostatic charge reversed this effect, allowing for precise tunability of charge concentration from n‐ to p‐type. We develop a model to determine the required sheet resistance of a graphene TCE with 97% transmittance in a perovskite/silicon tandem cell. As the technique here reported does not impact transmittance, a graphene TCE with a sheet resistance below 50 Ω/□ could enable efficiencies up to 44%, presenting a promising alternative to indium‐based TCEs.\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"31 12\",\"pages\":\"1478-1492\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3739\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3739\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3739","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

铟基透明导电电极(tce)是钙钛矿/硅串联电池可扩展性的主要限制因素,同时也限制了电池的最大效率。在这项工作中,我们提出了一种基于静电掺杂石墨烯单层的新型TCE来规避这些挑战。该电极由一层薄膜电介质驱动,该薄膜电介质带电并与石墨烯薄膜连接,最佳地利用了静电掺杂。该场效应机制允许单层石墨烯中的载流子作为介电薄膜中电荷浓度的函数进行调制。静电电荷沉积在二氧化硅膜上,石墨烯转移到二氧化硅膜上,由于诱导电荷载流子的作用,石墨烯的片电阻降低。我们展示了在仅仅3分钟的电介质充电中,石墨烯的薄片电阻降低了60%,而不影响光通过薄膜堆的传输。霍尔效应测量表明,薄膜的迁移率没有明显下降。负静电电荷的沉积逆转了这种效应,允许从n -型到p -型电荷浓度的精确可调性。我们开发了一个模型来确定在钙钛矿/硅串联电池中具有97%透射率的石墨烯TCE所需的片电阻。由于该技术不影响透光率,因此片电阻低于50 Ω/□的石墨烯TCE可以使效率高达44%,是铟基TCE的一个有希望的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards a graphene transparent conducting electrode for perovskite/silicon tandem solar cells

Towards a graphene transparent conducting electrode for perovskite/silicon tandem solar cells
Indium‐based transparent conducting electrodes (TCEs) are a major limiting factor in perovskite/silicon tandem cell scalability, while also limiting maximum cell efficiencies. In this work, we propose a novel TCE based on electrostatically doped graphene monolayers to circumvent these challenges. The electrode is enabled by a thin film dielectric that is charged and interfaced to a graphene film, optimally exploiting electrostatic doping. The field effect mechanism allows the modulation of charge carriers in monolayer graphene as a function of charge concentration in the dielectric thin film. Electrostatic charge was deposited on SiO2 membranes, and graphene transferred onto them exhibited a reduction in sheet resistance because of the induced charge carriers. We show a reduction in sheet resistance of graphene by 60% in just 3 min of dielectric charging, without impacting the transmission of light through the film stack. Hall effect measurements indicated that the mobility of the films was not significantly degraded. The deposition of negative electrostatic charge reversed this effect, allowing for precise tunability of charge concentration from n‐ to p‐type. We develop a model to determine the required sheet resistance of a graphene TCE with 97% transmittance in a perovskite/silicon tandem cell. As the technique here reported does not impact transmittance, a graphene TCE with a sheet resistance below 50 Ω/□ could enable efficiencies up to 44%, presenting a promising alternative to indium‐based TCEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信