前驱体对喷雾热解法制备的氧化锌薄膜的结构、光学和表面特性的影响:高效去除废水中的铜 (II)

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nassiba Allag, Abderrhmane Bouafia, Boudiaf Chemsa, Omar Ben Mya, Abdelouahad Chala, Chahinaz Siad, Mir Waqas Alam
{"title":"前驱体对喷雾热解法制备的氧化锌薄膜的结构、光学和表面特性的影响:高效去除废水中的铜 (II)","authors":"Nassiba Allag,&nbsp;Abderrhmane Bouafia,&nbsp;Boudiaf Chemsa,&nbsp;Omar Ben Mya,&nbsp;Abdelouahad Chala,&nbsp;Chahinaz Siad,&nbsp;Mir Waqas Alam","doi":"10.1007/s11243-023-00560-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, ZnO thin films were prepared with different precursors using the spray pyrolysis technique, zinc acetate (ZAC-0.2), zinc chloride (ZCL-0.2), and dehydrated zinc nitrate (ZNH-0.2) precursors. The formation of ZnO thin films was confirmed using a variety of characterization techniques, including UV–vis spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The primary aim of this study is to explore how different precursor materials affect the properties of ZnO thin films and to demonstrate the efficacy of these films in removing copper ions from wastewater. The structure, microstructure, and optical properties of these materials were investigated, along with their adsorption activity. The results revealed that all ZnO films exhibited a hexagonal wurtzite crystal structure. The ZAC-0.2 sample demonstrated the highest transparency within the 400–800 nm wavelength range. The sample with the least band gap was ZNH-0.2, with a value of 1.96 eV, and exhibited the highest Urbach energy (Eurb) at 1.150 eV. Moreover, the ZnO thin films displayed high efficiency in removing 80% of copper ions from an aqueous solution.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of precursors on structural, optical and surface properties of ZnO thin film prepared by spray pyrolysis method: efficient removal of Cu (II) from wastewater\",\"authors\":\"Nassiba Allag,&nbsp;Abderrhmane Bouafia,&nbsp;Boudiaf Chemsa,&nbsp;Omar Ben Mya,&nbsp;Abdelouahad Chala,&nbsp;Chahinaz Siad,&nbsp;Mir Waqas Alam\",\"doi\":\"10.1007/s11243-023-00560-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, ZnO thin films were prepared with different precursors using the spray pyrolysis technique, zinc acetate (ZAC-0.2), zinc chloride (ZCL-0.2), and dehydrated zinc nitrate (ZNH-0.2) precursors. The formation of ZnO thin films was confirmed using a variety of characterization techniques, including UV–vis spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The primary aim of this study is to explore how different precursor materials affect the properties of ZnO thin films and to demonstrate the efficacy of these films in removing copper ions from wastewater. The structure, microstructure, and optical properties of these materials were investigated, along with their adsorption activity. The results revealed that all ZnO films exhibited a hexagonal wurtzite crystal structure. The ZAC-0.2 sample demonstrated the highest transparency within the 400–800 nm wavelength range. The sample with the least band gap was ZNH-0.2, with a value of 1.96 eV, and exhibited the highest Urbach energy (Eurb) at 1.150 eV. Moreover, the ZnO thin films displayed high efficiency in removing 80% of copper ions from an aqueous solution.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-023-00560-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-023-00560-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用喷雾热解技术,用醋酸锌(ZAC-0.2)、氯化锌(ZCL-0.2)和脱水硝酸锌(ZNH-0.2)等不同前驱体制备了氧化锌薄膜。利用多种表征技术,包括紫外-可见光谱、傅立叶变换红外光谱、扫描电子显微镜、能量色散 X 射线光谱和 X 射线衍射(XRD),证实了氧化锌薄膜的形成。本研究的主要目的是探索不同的前驱体材料如何影响氧化锌薄膜的特性,并证明这些薄膜在去除废水中的铜离子方面的功效。研究了这些材料的结构、微观结构和光学特性,以及它们的吸附活性。结果表明,所有氧化锌薄膜都呈现出六方菱形晶体结构。在 400-800 纳米波长范围内,ZAC-0.2 样品的透明度最高。带隙最小的样品是 ZNH-0.2,带隙值为 1.96 eV,表现出最高的厄巴赫能(Eurb),为 1.150 eV。此外,氧化锌薄膜还能高效地从水溶液中去除 80% 的铜离子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of precursors on structural, optical and surface properties of ZnO thin film prepared by spray pyrolysis method: efficient removal of Cu (II) from wastewater

Effect of precursors on structural, optical and surface properties of ZnO thin film prepared by spray pyrolysis method: efficient removal of Cu (II) from wastewater

In this study, ZnO thin films were prepared with different precursors using the spray pyrolysis technique, zinc acetate (ZAC-0.2), zinc chloride (ZCL-0.2), and dehydrated zinc nitrate (ZNH-0.2) precursors. The formation of ZnO thin films was confirmed using a variety of characterization techniques, including UV–vis spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction (XRD). The primary aim of this study is to explore how different precursor materials affect the properties of ZnO thin films and to demonstrate the efficacy of these films in removing copper ions from wastewater. The structure, microstructure, and optical properties of these materials were investigated, along with their adsorption activity. The results revealed that all ZnO films exhibited a hexagonal wurtzite crystal structure. The ZAC-0.2 sample demonstrated the highest transparency within the 400–800 nm wavelength range. The sample with the least band gap was ZNH-0.2, with a value of 1.96 eV, and exhibited the highest Urbach energy (Eurb) at 1.150 eV. Moreover, the ZnO thin films displayed high efficiency in removing 80% of copper ions from an aqueous solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信