基于 PCA 的点云快速点特征直方图简化算法

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zhong Gan, Boyu Ma, Zihao Ling
{"title":"基于 PCA 的点云快速点特征直方图简化算法","authors":"Zhong Gan,&nbsp;Boyu Ma,&nbsp;Zihao Ling","doi":"10.1002/eng2.12800","DOIUrl":null,"url":null,"abstract":"<p>In order to realize efficient and lightweight digital inspection technology, we propose an improved method to simplification large volumes of scanned point cloud data of aircraft integral panels and facilitate subsequent processing. Fast Point Feature Histogram (FPFH) method is utilized to extract feature information and optimize the Principal Component Analysis (PCA) algorithm to calculate the contribution degree to transform into principal components, yielding PCA-based FPFH features. Next, based on PCA-based FPFH features, we classify the point cloud data into non-feature and feature point clouds and extract the feature point clouds through random downsampling to obtain simplified non-feature point clouds, extract the feature point clouds to retain their boundary integrity, and downsample the remaining feature point clouds by curvature to obtain the simplified feature point clouds. Finally, we combine the two to obtain the final simplified panel point cloud data within 30 s. To evaluate the simplification effect, we adopt a standardized information entropy-based point cloud simplification accuracy evaluation method based on the simplification rate. Our method achieves an information entropy of more than 0.95, indicating its effectiveness in simplification point cloud data for efficient and lightweight digital inspection technology.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.12800","citationCount":"0","resultStr":"{\"title\":\"PCA-based fast point feature histogram simplification algorithm for point clouds\",\"authors\":\"Zhong Gan,&nbsp;Boyu Ma,&nbsp;Zihao Ling\",\"doi\":\"10.1002/eng2.12800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to realize efficient and lightweight digital inspection technology, we propose an improved method to simplification large volumes of scanned point cloud data of aircraft integral panels and facilitate subsequent processing. Fast Point Feature Histogram (FPFH) method is utilized to extract feature information and optimize the Principal Component Analysis (PCA) algorithm to calculate the contribution degree to transform into principal components, yielding PCA-based FPFH features. Next, based on PCA-based FPFH features, we classify the point cloud data into non-feature and feature point clouds and extract the feature point clouds through random downsampling to obtain simplified non-feature point clouds, extract the feature point clouds to retain their boundary integrity, and downsample the remaining feature point clouds by curvature to obtain the simplified feature point clouds. Finally, we combine the two to obtain the final simplified panel point cloud data within 30 s. To evaluate the simplification effect, we adopt a standardized information entropy-based point cloud simplification accuracy evaluation method based on the simplification rate. Our method achieves an information entropy of more than 0.95, indicating its effectiveness in simplification point cloud data for efficient and lightweight digital inspection technology.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.12800\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.12800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.12800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

为了实现高效、轻便的数字检测技术,我们提出了一种改进的方法来简化飞机整体面板的大量扫描点云数据并方便后续处理。利用快速点特征直方图(FPFH)方法提取特征信息,并优化主成分分析(PCA)算法,计算出转化为主成分的贡献度,从而得到基于 PCA 的 FPFH 特征。接着,根据基于 PCA 的 FPFH 特征,我们将点云数据分为非特征点云和特征点云,并通过随机下采样提取特征点云,得到简化的非特征点云;提取特征点云以保留其边界完整性,并对剩余的特征点云进行曲率下采样,得到简化的特征点云。为了评估简化效果,我们采用了基于简化率的标准化信息熵点云简化精度评估方法。我们的方法达到了 0.95 以上的信息熵,表明其在简化点云数据以实现高效、轻量级数字检测技术方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PCA-based fast point feature histogram simplification algorithm for point clouds

PCA-based fast point feature histogram simplification algorithm for point clouds

In order to realize efficient and lightweight digital inspection technology, we propose an improved method to simplification large volumes of scanned point cloud data of aircraft integral panels and facilitate subsequent processing. Fast Point Feature Histogram (FPFH) method is utilized to extract feature information and optimize the Principal Component Analysis (PCA) algorithm to calculate the contribution degree to transform into principal components, yielding PCA-based FPFH features. Next, based on PCA-based FPFH features, we classify the point cloud data into non-feature and feature point clouds and extract the feature point clouds through random downsampling to obtain simplified non-feature point clouds, extract the feature point clouds to retain their boundary integrity, and downsample the remaining feature point clouds by curvature to obtain the simplified feature point clouds. Finally, we combine the two to obtain the final simplified panel point cloud data within 30 s. To evaluate the simplification effect, we adopt a standardized information entropy-based point cloud simplification accuracy evaluation method based on the simplification rate. Our method achieves an information entropy of more than 0.95, indicating its effectiveness in simplification point cloud data for efficient and lightweight digital inspection technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信