HPS choolesky:自适应参数的分层并行超节点choolesky

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Shengle Lin, Wangdong Yang, Yikun Hu, Qinyun Cai, Minlu Dai, Haotian Wang, Kenli Li
{"title":"HPS choolesky:自适应参数的分层并行超节点choolesky","authors":"Shengle Lin, Wangdong Yang, Yikun Hu, Qinyun Cai, Minlu Dai, Haotian Wang, Kenli Li","doi":"10.1145/3630051","DOIUrl":null,"url":null,"abstract":"Sparse supernodal Cholesky on multi-NUMAs is challenging due to the supernode relaxation and load balancing. In this work, we propose a novel approach to improve the performance of sparse Cholesky by combining deep learning with a relaxation parameter and a hierarchical parallelization strategy with NUMA affinity. Specifically, our relaxed supernodal algorithm utilizes a well-trained GCN model to adaptively adjust relaxation parameters based on the sparse matrix’s structure, achieving a proper balance between task-level parallelism and dense computational granularity. Additionally, the hierarchical parallelization maps supernodal tasks to the local NUMA parallel queue and updates contribution blocks in pipeline mode. Furthermore, the stream scheduling with NUMA affinity can further enhance the efficiency of memory access during the numerical factorization. The experimental results show that HPS Cholesky can outperform state-of-the-art libraries, such as Eigen LL T , CHOLMOD, PaStiX and SuiteSparse on \\(79.78\\% \\) , \\(79.60\\% \\) , \\(82.09\\% \\) and \\(74.47\\% \\) of 1128 datasets. It achieves an average speedup of 1.41x over the current optimal relaxation algorithm. Moreover, \\(70.83\\% \\) of matrices have surpassed MKL sparse Cholesky on Xeon Gold 6248.","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"54 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HPS Cholesky: Hierarchical Parallelized Supernodal Cholesky with Adaptive Parameters\",\"authors\":\"Shengle Lin, Wangdong Yang, Yikun Hu, Qinyun Cai, Minlu Dai, Haotian Wang, Kenli Li\",\"doi\":\"10.1145/3630051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse supernodal Cholesky on multi-NUMAs is challenging due to the supernode relaxation and load balancing. In this work, we propose a novel approach to improve the performance of sparse Cholesky by combining deep learning with a relaxation parameter and a hierarchical parallelization strategy with NUMA affinity. Specifically, our relaxed supernodal algorithm utilizes a well-trained GCN model to adaptively adjust relaxation parameters based on the sparse matrix’s structure, achieving a proper balance between task-level parallelism and dense computational granularity. Additionally, the hierarchical parallelization maps supernodal tasks to the local NUMA parallel queue and updates contribution blocks in pipeline mode. Furthermore, the stream scheduling with NUMA affinity can further enhance the efficiency of memory access during the numerical factorization. The experimental results show that HPS Cholesky can outperform state-of-the-art libraries, such as Eigen LL T , CHOLMOD, PaStiX and SuiteSparse on \\\\(79.78\\\\% \\\\) , \\\\(79.60\\\\% \\\\) , \\\\(82.09\\\\% \\\\) and \\\\(74.47\\\\% \\\\) of 1128 datasets. It achieves an average speedup of 1.41x over the current optimal relaxation algorithm. Moreover, \\\\(70.83\\\\% \\\\) of matrices have surpassed MKL sparse Cholesky on Xeon Gold 6248.\",\"PeriodicalId\":42115,\"journal\":{\"name\":\"ACM Transactions on Parallel Computing\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Parallel Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3630051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3630051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

由于超节点松弛和负载平衡问题,多numa上的稀疏超节点Cholesky具有挑战性。在这项工作中,我们提出了一种新的方法,通过将深度学习与松弛参数和具有NUMA亲和力的分层并行化策略相结合来提高稀疏Cholesky的性能。具体而言,我们的松弛超节点算法利用训练良好的GCN模型,根据稀疏矩阵的结构自适应调整松弛参数,在任务级并行性和密集计算粒度之间实现了适当的平衡。此外,分层并行化将超节点任务映射到本地NUMA并行队列,并以管道模式更新贡献块。此外,具有NUMA亲和性的流调度可以进一步提高数值分解过程中的内存访问效率。实验结果表明,HPS Cholesky在1128个数据集的\(79.78\% \)、\(79.60\% \)、\(82.09\% \)和\(74.47\% \)上的性能优于Eigen LL T、CHOLMOD、PaStiX和SuiteSparse等最先进的库。与当前最优松弛算法相比,它实现了1.41倍的平均加速。此外,在Xeon Gold 6248上,矩阵的\(70.83\% \)已经超越了MKL稀疏Cholesky。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HPS Cholesky: Hierarchical Parallelized Supernodal Cholesky with Adaptive Parameters
Sparse supernodal Cholesky on multi-NUMAs is challenging due to the supernode relaxation and load balancing. In this work, we propose a novel approach to improve the performance of sparse Cholesky by combining deep learning with a relaxation parameter and a hierarchical parallelization strategy with NUMA affinity. Specifically, our relaxed supernodal algorithm utilizes a well-trained GCN model to adaptively adjust relaxation parameters based on the sparse matrix’s structure, achieving a proper balance between task-level parallelism and dense computational granularity. Additionally, the hierarchical parallelization maps supernodal tasks to the local NUMA parallel queue and updates contribution blocks in pipeline mode. Furthermore, the stream scheduling with NUMA affinity can further enhance the efficiency of memory access during the numerical factorization. The experimental results show that HPS Cholesky can outperform state-of-the-art libraries, such as Eigen LL T , CHOLMOD, PaStiX and SuiteSparse on \(79.78\% \) , \(79.60\% \) , \(82.09\% \) and \(74.47\% \) of 1128 datasets. It achieves an average speedup of 1.41x over the current optimal relaxation algorithm. Moreover, \(70.83\% \) of matrices have surpassed MKL sparse Cholesky on Xeon Gold 6248.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.10
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信