Assel Ospan, Madina Mansurova, Vladimir Barakhnin, Aliya Nugumanova, Roman Titkov
{"title":"基于水资源监测本体的区域可持续发展研究","authors":"Assel Ospan, Madina Mansurova, Vladimir Barakhnin, Aliya Nugumanova, Roman Titkov","doi":"10.3390/data8110162","DOIUrl":null,"url":null,"abstract":"The development of knowledge graphs about water resources as a tool for studying the sustainable development of a region is currently an urgent task, because the growing deterioration of the state of water bodies affects the ecology, economy, and health of the population of the region. This study presents a new ontological approach to water resource monitoring in Kazakhstan, providing data integration from heterogeneous sources, semantic analysis, decision support, and querying and searching and presenting new knowledge in the field of water monitoring. The contribution of this work is the integration of table extraction and understanding, semantic web rule language, semantic sensor network, time ontology methods, and the inclusion of a module of socioeconomic indicators that reveal the impact of water quality on the quality of life of the population. Using machine learning methods, the study derived six ontological rules to establish new knowledge about water resource monitoring. The results of the queries demonstrate the effectiveness of the proposed method, demonstrating its potential to improve water monitoring practices, promote sustainable resource management, and support decision-making processes in Kazakhstan, and can also be integrated into the ontology of water resources at the scale of Central Asia.","PeriodicalId":36824,"journal":{"name":"Data","volume":"137 1-2","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Development of a Water Resource Monitoring Ontology as a Research Tool for Sustainable Regional Development\",\"authors\":\"Assel Ospan, Madina Mansurova, Vladimir Barakhnin, Aliya Nugumanova, Roman Titkov\",\"doi\":\"10.3390/data8110162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of knowledge graphs about water resources as a tool for studying the sustainable development of a region is currently an urgent task, because the growing deterioration of the state of water bodies affects the ecology, economy, and health of the population of the region. This study presents a new ontological approach to water resource monitoring in Kazakhstan, providing data integration from heterogeneous sources, semantic analysis, decision support, and querying and searching and presenting new knowledge in the field of water monitoring. The contribution of this work is the integration of table extraction and understanding, semantic web rule language, semantic sensor network, time ontology methods, and the inclusion of a module of socioeconomic indicators that reveal the impact of water quality on the quality of life of the population. Using machine learning methods, the study derived six ontological rules to establish new knowledge about water resource monitoring. The results of the queries demonstrate the effectiveness of the proposed method, demonstrating its potential to improve water monitoring practices, promote sustainable resource management, and support decision-making processes in Kazakhstan, and can also be integrated into the ontology of water resources at the scale of Central Asia.\",\"PeriodicalId\":36824,\"journal\":{\"name\":\"Data\",\"volume\":\"137 1-2\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/data8110162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/data8110162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
The Development of a Water Resource Monitoring Ontology as a Research Tool for Sustainable Regional Development
The development of knowledge graphs about water resources as a tool for studying the sustainable development of a region is currently an urgent task, because the growing deterioration of the state of water bodies affects the ecology, economy, and health of the population of the region. This study presents a new ontological approach to water resource monitoring in Kazakhstan, providing data integration from heterogeneous sources, semantic analysis, decision support, and querying and searching and presenting new knowledge in the field of water monitoring. The contribution of this work is the integration of table extraction and understanding, semantic web rule language, semantic sensor network, time ontology methods, and the inclusion of a module of socioeconomic indicators that reveal the impact of water quality on the quality of life of the population. Using machine learning methods, the study derived six ontological rules to establish new knowledge about water resource monitoring. The results of the queries demonstrate the effectiveness of the proposed method, demonstrating its potential to improve water monitoring practices, promote sustainable resource management, and support decision-making processes in Kazakhstan, and can also be integrated into the ontology of water resources at the scale of Central Asia.