关于随机2赋范空间中三重序列的理想收敛性

IF 2.2 3区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Symmetry-Basel Pub Date : 2023-10-26 DOI:10.3390/sym15111983
Feras Bani-Ahmad, Mohammad H. M. Rashid
{"title":"关于随机2赋范空间中三重序列的理想收敛性","authors":"Feras Bani-Ahmad, Mohammad H. M. Rashid","doi":"10.3390/sym15111983","DOIUrl":null,"url":null,"abstract":"In our ongoing study, we explore the concepts of I3-Cauchy and I3-Cauchy for triple sequences in the context of random 2-normed spaces (RTNS). Moreover, we introduce and analyze the notions of I3-convergence, I3-convergence, I3-limit points, and I3-cluster points for random 2-normed triple sequences. Significantly, we establish a notable finding that elucidates the connection between I3-convergence and I3-convergence within the framework of random 2-normed spaces, highlighting their interrelation. Additionally, we provide an illuminating example that demonstrates how I3-convergence in a random 2-normed space might not necessarily imply I3-convergence. Our observations underscore the importance of condition (AP3) when examining summability using ideals. Furthermore, we thoroughly investigate the relationship between the properties (AP) and (AP3), illustrating through an example how the latter represents a less strict condition compared to the former.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":"180 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regarding the Ideal Convergence of Triple Sequences in Random 2-Normed Spaces\",\"authors\":\"Feras Bani-Ahmad, Mohammad H. M. Rashid\",\"doi\":\"10.3390/sym15111983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our ongoing study, we explore the concepts of I3-Cauchy and I3-Cauchy for triple sequences in the context of random 2-normed spaces (RTNS). Moreover, we introduce and analyze the notions of I3-convergence, I3-convergence, I3-limit points, and I3-cluster points for random 2-normed triple sequences. Significantly, we establish a notable finding that elucidates the connection between I3-convergence and I3-convergence within the framework of random 2-normed spaces, highlighting their interrelation. Additionally, we provide an illuminating example that demonstrates how I3-convergence in a random 2-normed space might not necessarily imply I3-convergence. Our observations underscore the importance of condition (AP3) when examining summability using ideals. Furthermore, we thoroughly investigate the relationship between the properties (AP) and (AP3), illustrating through an example how the latter represents a less strict condition compared to the former.\",\"PeriodicalId\":48874,\"journal\":{\"name\":\"Symmetry-Basel\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry-Basel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym15111983\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15111983","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在我们正在进行的研究中,我们探讨了随机2赋范空间(RTNS)下三组序列的I3-Cauchy和I3-Cauchy的概念。此外,我们引入并分析了随机2赋范三重序列的i3收敛、i3收敛、i3极限点和i3聚类点的概念。值得注意的是,我们建立了一个显著的发现,阐明了在随机2赋范空间框架内i3收敛和i3收敛之间的联系,突出了它们之间的相互关系。此外,我们还提供了一个启发性的示例,说明在随机2赋范空间中i3收敛如何不一定意味着i3收敛。我们的观察强调了条件(AP3)在使用理想检查可和性时的重要性。此外,我们深入研究了属性(AP)和属性(AP3)之间的关系,通过一个例子说明了与前者相比,后者如何表示较不严格的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regarding the Ideal Convergence of Triple Sequences in Random 2-Normed Spaces
In our ongoing study, we explore the concepts of I3-Cauchy and I3-Cauchy for triple sequences in the context of random 2-normed spaces (RTNS). Moreover, we introduce and analyze the notions of I3-convergence, I3-convergence, I3-limit points, and I3-cluster points for random 2-normed triple sequences. Significantly, we establish a notable finding that elucidates the connection between I3-convergence and I3-convergence within the framework of random 2-normed spaces, highlighting their interrelation. Additionally, we provide an illuminating example that demonstrates how I3-convergence in a random 2-normed space might not necessarily imply I3-convergence. Our observations underscore the importance of condition (AP3) when examining summability using ideals. Furthermore, we thoroughly investigate the relationship between the properties (AP) and (AP3), illustrating through an example how the latter represents a less strict condition compared to the former.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Symmetry-Basel
Symmetry-Basel MULTIDISCIPLINARY SCIENCES-
CiteScore
5.40
自引率
11.10%
发文量
2276
审稿时长
14.88 days
期刊介绍: Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信